hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
SMDetector: Small mitotic detector in histopathology images using faster R-CNN with dilated convolutions in backbone model
Department of Computer Science, COMSATS University Islamabad, Islamabad, Pakistan.
Department of Computer Science, COMSATS University Islamabad, Islamabad, Pakistan.
Pathology Department, Nishtar Medical University, Multan, Pakistan.
Post Graduate Resident Surgeon at College of Physicians and Surgeons Pakistan (CPSP), Karachi, Pakistan.
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Biomedical Signal Processing and Control, ISSN 1746-8094, E-ISSN 1746-8108, Vol. 81, artikel-id 104414Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Breast cancer is one of the most common cancer types among women, and it is a deadly disease caused by the uncontrolled proliferation of cells. Pathologists face a challenging issue of mitotic cell identification and counting during manual detection and identification of cancer. Artificial intelligence can help the medical professional with early, quick, and accurate diagnosis of breast cancer. Consequently, the survival rate will be improved and mortality rate will be decreased. Different deep learning techniques are used in computational pathology for cancer diagnosis. In this study, the SMDetector is proposed which is a deep learning model for detecting small objects such as mitotic and non-mitotic nuclei. This model employs dilated layers in the backbone to prevent small objects from disappearing in the deep layers. The purpose of the dilated layers in this model is to reduce the size gap between the image and the objects it contains. Region proposal network is optimized to accurately identify small objects. The proposed model yielded overall average precision (AP) of 50.31% and average recall (AR) of 55.90% that outperforms the existing standard object detection models on ICPR 2014 (Mitos-Atypia-14) dataset. To best of our knowledge the proposed model is state-of-the-art model for precision and recall of mitotic object detection on ICPR 2014 (Mitos-Atypia-14) dataset. The proposed model has achieved average precision for mitotic nuclei 68.49%, average recall for mitotic nuclei 59.86% and f-measure 63.88%. © 2022 The Authors

Ort, förlag, år, upplaga, sidor
Amsterdam: Elsevier, 2023. Vol. 81, artikel-id 104414
Nyckelord [en]
Convolutional neural network, Faster R-CNN, Breast cancer, Computational pathology, Mitotic nuclei detection
Nationell ämneskategori
Annan hälsovetenskap Robotteknik och automation
Forskningsämne
Hälsoinnovation
Identifikatorer
URN: urn:nbn:se:hh:diva-48758DOI: 10.1016/j.bspc.2022.104414ISI: 000899370000006Scopus ID: 2-s2.0-85142679232OAI: oai:DiVA.org:hh-48758DiVA, id: diva2:1716354
Tillgänglig från: 2022-12-05 Skapad: 2022-12-05 Senast uppdaterad: 2023-08-21Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Tiwari, Prayag

Sök vidare i DiVA

Av författaren/redaktören
Tiwari, Prayag
Av organisationen
Akademin för informationsteknologi
I samma tidskrift
Biomedical Signal Processing and Control
Annan hälsovetenskapRobotteknik och automation

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 68 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf