hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improving Medication Adherence Through Adaptive Digital Interventions (iMedA) in Patients With Hypertension: Protocol for an Interrupted Time Series Study
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0003-2006-6229
Högskolan i Halmstad, Akademin för hälsa och välfärd, Centrum för forskning om välfärd, hälsa och idrott (CVHI).ORCID-id: 0000-0001-6215-2032
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-7453-9186
Högskolan i Halmstad, Akademin för hälsa och välfärd, Centrum för forskning om välfärd, hälsa och idrott (CVHI).ORCID-id: 0000-0002-1174-2523
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: JMIR Research Protocols, E-ISSN 1929-0748, Vol. 10, nr 5, artikel-id e24494Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background: There is a strong need to improve medication adherence (MA) for individuals with hypertension in order to reduce long-term hospitalization costs. We believe this can be achieved through an artificial intelligence agent that helps the patient in understanding key individual adherence risk factors and designing an appropriate intervention plan. The incidence of hypertension in Sweden is estimated at approximately 27%. Although blood pressure control has increased in Sweden, barely half of the treated patients achieved adequate blood pressure levels. It is a major risk factor for coronary heart disease and stroke as well as heart failure. MA is a key factor for good clinical outcomes in persons with hypertension.

Objective: The overall aim of this study is to design, develop, test, and evaluate an adaptive digital intervention called iMedA, delivered via a mobile app to improve MA, self-care management, and blood pressure control for persons with hypertension.

Methods: The study design is an interrupted time series. We will collect data on a daily basis, 14 days before, during 6 months of delivering digital interventions through the mobile app, and 14 days after. The effect will be analyzed using segmented regression analysis. The participants will be recruited in Region Halland, Sweden. The design of the digital interventions follows the just-in-time adaptive intervention framework. The primary (distal) outcome is MA, and the secondary outcome is blood pressure. The design of the digital intervention is developed based on a needs assessment process including a systematic review, focus group interviews, and a pilot study, before conducting the longitudinal interrupted time series study.

Results: The focus groups of persons with hypertension have been conducted to perform the needs assessment in a Swedish context. The design and development of digital interventions are in progress, and the interventions are planned to be ready in November 2020. Then, the 2-week pilot study for usability evaluation will start, and the interrupted time series study, which we plan to start in February 2021, will follow it.

Conclusions: We hypothesize that iMedA will improve medication adherence and self-care management. This study could illustrate how self-care management tools can be an additional (digital) treatment support to a clinical one without increasing burden on health care staff. © Kobra Etminani, Carina Göransson, Alexander Galozy, Margaretha Norell Pejner, Sławomir Nowaczyk.

Ort, förlag, år, upplaga, sidor
Toronto: JMIR , 2021. Vol. 10, nr 5, artikel-id e24494
Nyckelord [en]
medication adherence, hypertension, digital intervention, mHealth, artificial intelligence
Nationell ämneskategori
Hälsovetenskaper Omvårdnad
Identifikatorer
URN: urn:nbn:se:hh:diva-44275DOI: 10.2196/24494ISI: 000658257400006PubMedID: 33978593Scopus ID: 2-s2.0-85106034833OAI: oai:DiVA.org:hh-44275DiVA, id: diva2:1554443
Forskningsfinansiär
Vinnova, 2017-04617Tillgänglig från: 2021-05-14 Skapad: 2021-05-14 Senast uppdaterad: 2024-01-17Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Etminani, KobraGöransson, CarinaGalozy, AlexanderNorell Pejner, MargarethaNowaczyk, Sławomir

Sök vidare i DiVA

Av författaren/redaktören
Etminani, KobraGöransson, CarinaGalozy, AlexanderNorell Pejner, MargarethaNowaczyk, Sławomir
Av organisationen
CAISR Centrum för tillämpade intelligenta system (IS-lab)Centrum för forskning om välfärd, hälsa och idrott (CVHI)
I samma tidskrift
JMIR Research Protocols
HälsovetenskaperOmvårdnad

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 223 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf