hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Efficient Activity Recognition in Smart Homes Using Delayed Fuzzy Temporal Windows on Binary Sensors
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0001-9489-8330
University of Cádiz, Cádiz, Spain.ORCID-id: 0000-0001-9221-7351
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-2859-6155
University of Jaén, Jaén, Spain.ORCID-id: 0000-0003-1118-7782
Vise andre og tillknytning
2020 (engelsk)Inngår i: IEEE journal of biomedical and health informatics, ISSN 2168-2194, E-ISSN 2168-2208, Vol. 24, nr 2, s. 387-395Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Human activity recognition has become an active research field over the past few years due to its wide application in various fields such as health-care, smart home monitoring, and surveillance. Existing approaches for activity recognition in smart homes have achieved promising results. Most of these approaches evaluate real-time recognition of activities using only sensor activations that precede the evaluation time (where the decision is made). However, in several critical situations, such as diagnosing people with dementia, “preceding sensor activations” are not always sufficient to accurately recognize the inhabitant's daily activities in each evaluated time. To improve performance, we propose a method that delays the recognition process in order to include some sensor activations that occur after the point in time where the decision needs to be made. For this, the proposed method uses multiple incremental fuzzy temporal windows to extract features from both preceding and some oncoming sensor activations. The proposed method is evaluated with two temporal deep learning models (convolutional neural network and long short-term memory), on a binary sensor dataset of real daily living activities. The experimental evaluation shows that the proposed method achieves significantly better results than the real-time approach, and that the representation with fuzzy temporal windows enhances performance within deep learning models. © Copyright 2020 IEEE

sted, utgiver, år, opplag, sider
Piscataway: Institute of Electrical and Electronics Engineers (IEEE), 2020. Vol. 24, nr 2, s. 387-395
Emneord [en]
Activity recognition, fuzzy temporal windows, deep learning, temporal evaluation
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-41633DOI: 10.1109/JBHI.2019.2918412Scopus ID: 2-s2.0-85079094027OAI: oai:DiVA.org:hh-41633DiVA, id: diva2:1392777
Forskningsfinansiär
EU, Horizon 2020
Merknad

Other funding: Marie Sklodowska-Curie EU Framework for Research

Tilgjengelig fra: 2020-02-10 Laget: 2020-02-10 Sist oppdatert: 2020-03-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Ali Hamad, RebeenBouguelia, Mohamed-Rafik

Søk i DiVA

Av forfatter/redaktør
Ali Hamad, RebeenSalguero Hidalgo, AlbertoBouguelia, Mohamed-RafikEstevez, Macarena EspinillaQuero, Javier Medina
Av organisasjonen
I samme tidsskrift
IEEE journal of biomedical and health informatics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 14 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf