hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
No Free Lunch But A Cheaper Supper: A General Framework for Streaming Anomaly Detection
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-6249-4144
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-7796-5201
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-3495-2961
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).
2020 (engelsk)Inngår i: Expert systems with applications, ISSN 0957-4174, E-ISSN 1873-6793Artikkel i tidsskrift (Fagfellevurdert) Submitted
Abstract [en]

In recent years, there has been increased research interest in detecting anomalies in temporal streaming data. A variety of algorithms have been developed in the data mining community, which can be divided into two categories (i.e., general and ad hoc). In most cases, general approaches assume the one-size-fits-all solution model where a single anomaly detector can detect all anomalies in any domain.  To date, there exists no single general method that has been shown to outperform the others across different anomaly types, use cases and datasets. On the other hand, ad hoc approaches that are designed for a specific application lack flexibility. Adapting an existing algorithm is not straightforward if the specific constraints or requirements for the existing task change. In this paper, we propose SAFARI, a general framework formulated by abstracting and unifying the fundamental tasks in streaming anomaly detection, which provides a flexible and extensible anomaly detection procedure. SAFARI helps to facilitate more elaborate algorithm comparisons by allowing us to isolate the effects of shared and unique characteristics of different algorithms on detection performance. Using SAFARI, we have implemented various anomaly detectors and identified a research gap that motivates us to propose a novel learning strategy in this work. We conducted an extensive evaluation study of 20 detectors that are composed using SAFARI and compared their performances using real-world benchmark datasets with different properties. The results indicate that there is no single superior detector that works well for every case, proving our hypothesis that "there is no free lunch" in the streaming anomaly detection world. Finally, we discuss the benefits and drawbacks of each method in-depth and draw a set of conclusions to guide future users of SAFARI.

sted, utgiver, år, opplag, sider
Oxford: Elsevier, 2020.
Emneord [en]
anomaly detection
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-41420OAI: oai:DiVA.org:hh-41420DiVA, id: diva2:1389296
Forskningsfinansiär
Knowledge Foundation, 20160103Tilgjengelig fra: 2020-01-29 Laget: 2020-01-29 Sist oppdatert: 2020-02-18
Inngår i avhandling
1. Self-Monitoring using Joint Human-Machine Learning: Algorithms and Applications
Åpne denne publikasjonen i ny fane eller vindu >>Self-Monitoring using Joint Human-Machine Learning: Algorithms and Applications
2020 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The ability to diagnose deviations and predict faults effectively is an important task in various industrial domains for minimizing costs and productivity loss and also conserving environmental resources. However, the majority of the efforts for diagnostics are still carried out by human experts in a time-consuming and expensive manner. Automated data-driven solutions are needed for continuous monitoring of complex systems over time. On the other hand, domain expertise plays a significant role in developing, evaluating, and improving diagnostics and monitoring functions. Therefore, automatically derived solutions must be able to interact with domain experts by taking advantage of available a priori knowledge and by incorporating their feedback into the learning process.

This thesis and appended papers tackle the problem of generating a real-world self-monitoring system for continuous monitoring of machines and operations by developing algorithms that can learn data streams and their relations over time and detect anomalies using joint-human machine learning. Throughout this thesis, we have described a number of different approaches, each designed for the needs of a self-monitoring system, and have composed these methods into a coherent framework. More specifically, we presented a two-layer meta-framework, in which the first layer was concerned with learning appropriate data representations and detectinganomalies in an unsupervised fashion, and the second layer aimed at interactively exploiting available expert knowledge in a joint human-machine learning fashion.

Furthermore, district heating has been the focus of this thesis as the application domain with the goal of automatically detecting faults and anomalies by comparing heat demands among different groups of customers. We applied and enriched different methods on this domain, which then contributed to the development and improvement of the meta-framework. The contributions that result from the studies included in this work can be summarized into four categories: (1) exploring different data representations that are suitable for the self-monitoring task based on data characteristics and domain knowledge, (2) discovering patterns and groups in data that describe normal behavior of the monitored system/systems, (3) implementing methods to successfully discriminate anomalies from the normal behavior, and (4) incorporating domain knowledge and expert feedback into self-monitoring.

sted, utgiver, år, opplag, sider
Halmstad: Halmstad University Press, 2020. s. 45
Serie
Halmstad University Dissertations ; 69
Emneord
self-monitoring, anomaly detection, machine learning
HSV kategori
Identifikatorer
urn:nbn:se:hh:diva-41421 (URN)978-91-88749-47-5 (ISBN)978-91-88749-46-8 (ISBN)
Presentation
2020-02-25, J102 Wigforssalen, Kristian IV:s väg 3, Halmstad, 13:00 (engelsk)
Opponent
Veileder
Forskningsfinansiär
Knowledge Foundation, 20160103
Tilgjengelig fra: 2020-01-31 Laget: 2020-01-29 Sist oppdatert: 2020-01-31bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Full text

Personposter BETA

Calikus, EceNowaczyk, SławomirPinheiro Sant'Anna, AnitaDikmen, Onur

Søk i DiVA

Av forfatter/redaktør
Calikus, EceNowaczyk, SławomirPinheiro Sant'Anna, AnitaDikmen, Onur
Av organisasjonen
I samme tidsskrift
Expert systems with applications

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 76 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf