hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Stacked Ensemble of Recurrent Neural Networks for Predicting Turbocharger Remaining Useful Life
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-0051-0954
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-7796-5201
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0003-3272-4145
2020 (engelsk)Inngår i: Applied Sciences, E-ISSN 2076-3417, Vol. 10, nr 1, artikkel-id 69Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Predictive Maintenance (PM) is a proactive maintenance strategy that tries to minimize a system’s downtime by predicting failures before they happen. It uses data from sensors to measure the component’s state of health and make forecasts about its future degradation. However, existing PM methods typically focus on individual measurements. While it is natural to assume that a history of measurements carries more information than a single one. This paper aims at incorporating such information into PM models. In practice, especially in the automotive domain, diagnostic models have low performance, due to a large amount of noise in the data and limited sensing capability. To address this issue, this paper proposes to use a specific type of ensemble learning known as Stacked Ensemble. The idea is to aggregate predictions of multiple models—consisting of Long Short-Term Memory (LSTM) and Convolutional-LSTM—via a meta model, in order to boost performance. Stacked Ensemble model performs well when its base models are as diverse as possible. To this end, each such model is trained using a specific combination of the following three aspects: feature subsets, past dependency horizon, and model architectures. Experimental results demonstrate benefits of the proposed approach on a case study of heavy-duty truck turbochargers. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

sted, utgiver, år, opplag, sider
Basel: MDPI, 2020. Vol. 10, nr 1, artikkel-id 69
Emneord [en]
predictive maintenance, remaining useful life, recurrent neural networks, LSTM, Stacked Ensemble
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-41314DOI: 10.3390/app10010069OAI: oai:DiVA.org:hh-41314DiVA, id: diva2:1381884
Prosjekter
HEALTH-VINNOVA
Forskningsfinansiär
VinnovaTilgjengelig fra: 2019-12-29 Laget: 2019-12-29 Sist oppdatert: 2020-01-21bibliografisk kontrollert

Open Access i DiVA

fulltext(493 kB)22 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 493 kBChecksum SHA-512
58f1cf94b174c2c480002f07a19d686f29be491e463bf0a38b7b451cbffb9a0b27e545410769eed48488b9d9023b767f989fd57d2b93b2a5aac9516d4706fb99
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Sheikholharam Mashhadi, PeymanNowaczyk, SławomirPashami, Sepideh

Søk i DiVA

Av forfatter/redaktør
Sheikholharam Mashhadi, PeymanNowaczyk, SławomirPashami, Sepideh
Av organisasjonen
I samme tidsskrift
Applied Sciences

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 22 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 67 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf