hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Understanding Association Between Logged Vehicle Data and Vehicle Marketing Parameters - Using Clustering and Rule-Based Machine Learning
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0003-3272-4145
Visa övriga samt affilieringar
2020 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Trucks are designed, configured and marketed for various working environments. There lies a concern whether trucks are used as intended by the manufacturer, as usage may impact the longevity, efficiency and productivity of the trucks.

In this paper we propose a framework that aims to extract costumers' vehicle behaviours from LVD in order to evaluate whether they align with vehicle configurations, so-called GTA parameters. GMMs are employed to cluster and classify various vehicle behaviors from the LVD. RBML was applied on the clusters to examine whether vehicle behaviors follow the GTA configuration. Particularly, we propose an approach based on studying associations that is able to extract insights on whether the trucks are used as intended. Experimental results shown that while for the vast majority of the trucks' behaviors seemingly follows their GTA configuration, there are also interesting outliers that warrant further analysis.

Ort, förlag, år, upplaga, sidor
2020.
Nyckelord [en]
Machine Learning, Clustering, Usage Behaviors, Association Rule Mining, Gaussian Mixture Models.
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:hh:diva-41214OAI: oai:DiVA.org:hh-41214DiVA, id: diva2:1376856
Konferens
The 3rd International Conference on Information Management and Processing (ICIMP 2020), Portsmouth, United Kingdom, June 11-13, 2020
Tillgänglig från: 2019-12-10 Skapad: 2019-12-10 Senast uppdaterad: 2020-02-17

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Khoshkangini, RezaPashami, SepidehNowaczyk, Sławomir

Sök vidare i DiVA

Av författaren/redaktören
Khoshkangini, RezaPashami, SepidehNowaczyk, Sławomir
Av organisationen
CAISR Centrum för tillämpade intelligenta system (IS-lab)
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 128 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf