hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A data-driven approach for discovering heat load patterns in district heating
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-6249-4144
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-7796-5201
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-3495-2961
Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap. Öresundskraft, Helsingborg, Sweden.
Vise andre og tillknytning
2019 (engelsk)Inngår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 252, artikkel-id 113409Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Understanding the heat usage of customers is crucial for effective district heating operations and management. Unfortunately, existing knowledge about customers and their heat load behaviors is quite scarce. Most previous studies are limited to small-scale analyses that are not representative enough to understand the behavior of the overall network. In this work, we propose a data-driven approach that enables large-scale automatic analysis of heat load patterns in district heating networks without requiring prior knowledge. Our method clusters the customer profiles into different groups, extracts their representative patterns, and detects unusual customers whose profiles deviate significantly from the rest of their group. Using our approach, we present the first large-scale, comprehensive analysis of the heat load patterns by conducting a case study on many buildings in six different customer categories connected to two district heating networks in the south of Sweden. The 1222 buildings had a total floor space of 3.4 million square meters and used 1540 TJ heat during 2016. The results show that the proposed method has a high potential to be deployed and used in practice to analyze and understand customers’ heat-use habits. © 2019 Calikus et al. Published by Elsevier Ltd.

sted, utgiver, år, opplag, sider
Oxford: Elsevier, 2019. Vol. 252, artikkel-id 113409
Emneord [en]
District heating, Energy efficiency, Heat load patterns, Clustering, Abnormal heat use
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-40907DOI: 10.1016/j.apenergy.2019.113409ISI: 000497968000013Scopus ID: 2-s2.0-85066961984OAI: oai:DiVA.org:hh-40907DiVA, id: diva2:1369639
Forskningsfinansiär
Knowledge Foundation, 20160103Tilgjengelig fra: 2019-11-12 Laget: 2019-11-12 Sist oppdatert: 2019-12-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Calikus, EceNowaczyk, SławomirPinheiro Sant'Anna, AnitaGadd, HenrikWerner, Sven

Søk i DiVA

Av forfatter/redaktør
Calikus, EceNowaczyk, SławomirPinheiro Sant'Anna, AnitaGadd, HenrikWerner, Sven
Av organisasjonen
I samme tidsskrift
Applied Energy

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 17 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf