hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A data-driven approach for discovering heat load patterns in district heating
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-6249-4144
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-7796-5201
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-3495-2961
Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, Rydberglaboratoriet för tillämpad naturvetenskap (RLAS). Öresundskraft, Helsingborg, Sweden.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 252, artikel-id 113409Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Understanding the heat usage of customers is crucial for effective district heating operations and management. Unfortunately, existing knowledge about customers and their heat load behaviors is quite scarce. Most previous studies are limited to small-scale analyses that are not representative enough to understand the behavior of the overall network. In this work, we propose a data-driven approach that enables large-scale automatic analysis of heat load patterns in district heating networks without requiring prior knowledge. Our method clusters the customer profiles into different groups, extracts their representative patterns, and detects unusual customers whose profiles deviate significantly from the rest of their group. Using our approach, we present the first large-scale, comprehensive analysis of the heat load patterns by conducting a case study on many buildings in six different customer categories connected to two district heating networks in the south of Sweden. The 1222 buildings had a total floor space of 3.4 million square meters and used 1540 TJ heat during 2016. The results show that the proposed method has a high potential to be deployed and used in practice to analyze and understand customers’ heat-use habits. © 2019 Calikus et al. Published by Elsevier Ltd.

Ort, förlag, år, upplaga, sidor
Oxford: Elsevier, 2019. Vol. 252, artikel-id 113409
Nyckelord [en]
District heating, Energy efficiency, Heat load patterns, Clustering, Abnormal heat use
Nationell ämneskategori
Annan elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:hh:diva-40907DOI: 10.1016/j.apenergy.2019.113409ISI: 000497968000013Scopus ID: 2-s2.0-85066961984OAI: oai:DiVA.org:hh-40907DiVA, id: diva2:1369639
Forskningsfinansiär
KK-stiftelsen, 20160103Tillgänglig från: 2019-11-12 Skapad: 2019-11-12 Senast uppdaterad: 2020-04-22Bibliografiskt granskad
Ingår i avhandling
1. Self-Monitoring using Joint Human-Machine Learning: Algorithms and Applications
Öppna denna publikation i ny flik eller fönster >>Self-Monitoring using Joint Human-Machine Learning: Algorithms and Applications
2020 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The ability to diagnose deviations and predict faults effectively is an important task in various industrial domains for minimizing costs and productivity loss and also conserving environmental resources. However, the majority of the efforts for diagnostics are still carried out by human experts in a time-consuming and expensive manner. Automated data-driven solutions are needed for continuous monitoring of complex systems over time. On the other hand, domain expertise plays a significant role in developing, evaluating, and improving diagnostics and monitoring functions. Therefore, automatically derived solutions must be able to interact with domain experts by taking advantage of available a priori knowledge and by incorporating their feedback into the learning process.

This thesis and appended papers tackle the problem of generating a real-world self-monitoring system for continuous monitoring of machines and operations by developing algorithms that can learn data streams and their relations over time and detect anomalies using joint-human machine learning. Throughout this thesis, we have described a number of different approaches, each designed for the needs of a self-monitoring system, and have composed these methods into a coherent framework. More specifically, we presented a two-layer meta-framework, in which the first layer was concerned with learning appropriate data representations and detectinganomalies in an unsupervised fashion, and the second layer aimed at interactively exploiting available expert knowledge in a joint human-machine learning fashion.

Furthermore, district heating has been the focus of this thesis as the application domain with the goal of automatically detecting faults and anomalies by comparing heat demands among different groups of customers. We applied and enriched different methods on this domain, which then contributed to the development and improvement of the meta-framework. The contributions that result from the studies included in this work can be summarized into four categories: (1) exploring different data representations that are suitable for the self-monitoring task based on data characteristics and domain knowledge, (2) discovering patterns and groups in data that describe normal behavior of the monitored system/systems, (3) implementing methods to successfully discriminate anomalies from the normal behavior, and (4) incorporating domain knowledge and expert feedback into self-monitoring.

Ort, förlag, år, upplaga, sidor
Halmstad: Halmstad University Press, 2020. s. 45
Serie
Halmstad University Dissertations ; 69
Nyckelord
self-monitoring, anomaly detection, machine learning
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:hh:diva-41421 (URN)978-91-88749-47-5 (ISBN)978-91-88749-46-8 (ISBN)
Presentation
2020-02-25, J102 Wigforssalen, Kristian IV:s väg 3, Halmstad, 13:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
KK-stiftelsen, 20160103
Tillgänglig från: 2020-01-31 Skapad: 2020-01-29 Senast uppdaterad: 2020-01-31Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Calikus, EceNowaczyk, SławomirPinheiro Sant'Anna, AnitaGadd, HenrikWerner, Sven

Sök vidare i DiVA

Av författaren/redaktören
Calikus, EceNowaczyk, SławomirPinheiro Sant'Anna, AnitaGadd, HenrikWerner, Sven
Av organisationen
CAISR Centrum för tillämpade intelligenta system (IS-lab)Rydberglaboratoriet för tillämpad naturvetenskap (RLAS)
I samma tidskrift
Applied Energy
Annan elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 86 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf