hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Causal discovery using clusters from observational data
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0003-3272-4145
RISE SICS, Stockholm, Sweden.
School of Informatics, University of Skövde, Sweden.
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-7796-5201
2018 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Many methods have been proposed over the years for distinguishing causes from effects using observational data only, and new ones are continuously being developed – deducing causal relationships is difficult enough that we do not hope to ever get the perfect one. Instead, we progress by creating powerful heuristics, capable of capturing more and more of the hints that are present in real data.

One type of such hints, quite surprisingly rarely explicitly addressed by existing methods, is in-homogeneities in the data. Clusters are a very typical occurrence that should be taken into account, and exploited, in the process of identifying causes and effects. In this paper, we discuss the potential benefits, and explore the hints that clusters in the data can provide for causal discovery. We propose a new method, and show, using both artificial and real data, that accounting for clusters in the data leads to more accurate learning of causal structures.

sted, utgiver, år, opplag, sider
2018.
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-39216OAI: oai:DiVA.org:hh-39216DiVA, id: diva2:1303420
Konferanse
FAIM'18 Workshop on CausalML, Stockholm, Sweden, July 15, 2018
Tilgjengelig fra: 2019-04-09 Laget: 2019-04-09 Sist oppdatert: 2019-04-11bibliografisk kontrollert

Open Access i DiVA

fulltext(3755 kB)125 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3755 kBChecksum SHA-512
17940b2f33c57cf735591d8b1dbf8f76b6e929bd79a4109794784487184c71f6ab6e96155010ea1288f4ea6077ff00bad4b7c498c4d88ae15f78ebab99bf748a
Type fulltextMimetype application/pdf

Andre lenker

Full text

Personposter BETA

Pashami, SepidehNowaczyk, Sławomir

Søk i DiVA

Av forfatter/redaktør
Pashami, SepidehNowaczyk, Sławomir
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 125 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 142 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf