hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Safe & robust reachability analysis of hybrid systems
DIBRIS, Genova Univ., v. Dodecaneso 35, Genova, 16146, Italy.
University of Nottingham Ningbo, China.
Rice University, Houston, TX, United States.
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Centrum för forskning om inbyggda system (CERES).ORCID-id: 0000-0003-3160-9188
2018 (Engelska)Ingår i: Theoretical Computer Science, ISSN 0304-3975, E-ISSN 1879-2294, Vol. 747, s. 75-99Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Hybrid systems—more precisely, their mathematical models—can exhibit behaviors, like Zeno behaviors, that are absent in purely discrete or purely continuous systems. First, we observe that, in this context, the usual definition of reachability—namely, the reflexive and transitive closure of a transition relation—can be unsafe, i.e., it may compute a proper subset of the set of states reachable in finite time from a set of initial states. Therefore, we propose safe reachability, which always computes a superset of the set of reachable states. Second, in safety analysis of hybrid and continuous systems, it is important to ensure that a reachability analysis is also robust w.r.t. small perturbations to the set of initial states and to the system itself, since discrepancies between a system and its mathematical models are unavoidable. We show that, under certain conditions, the best Scott continuous approximation of an analysis A is also its best robust approximation. Finally, we exemplify the gap between the set of reachable states and the supersets computed by safe reachability and its best robust approximation. © 2018 The Authors

Ort, förlag, år, upplaga, sidor
Amsterdam: Elsevier, 2018. Vol. 747, s. 75-99
Nyckelord [en]
Computational methods, Computer science, Robustness (control systems), Continuous approximations, Domain theory, Reachability, Reachability analysis, Robust approximations, Small perturbations, Transition relations, Transitive closure, Hybrid systems
Nationell ämneskategori
Reglerteknik Beräkningsmatematik Inbäddad systemteknik
Identifikatorer
URN: urn:nbn:se:hh:diva-38699DOI: 10.1016/j.tcs.2018.06.020ISI: 000447571900005Scopus ID: 2-s2.0-85048949865OAI: oai:DiVA.org:hh-38699DiVA, id: diva2:1276475
Forskningsfinansiär
KK-stiftelsenELLIIT - The Linköping‐Lund Initiative on IT and Mobile Communications
Anmärkning

Funding: US NSF Grant number: 1736759

Tillgänglig från: 2019-01-08 Skapad: 2019-01-08 Senast uppdaterad: 2019-01-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Taha, Walid

Sök vidare i DiVA

Av författaren/redaktören
Taha, Walid
Av organisationen
Centrum för forskning om inbyggda system (CERES)
I samma tidskrift
Theoretical Computer Science
ReglerteknikBeräkningsmatematikInbäddad systemteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 97 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf