hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Stability analysis of the t-SNE algorithm for human activity pattern data
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0001-9307-9421
JeCom Consulting, Halmstad, Sweden.ORCID-id: 0000-0001-8804-5884
2018 (engelsk)Konferansepaper, Oral presentation with published abstract (Fagfellevurdert)
Abstract [en]

Health technological systems learning from and reacting on how humans behave in sensor equipped environments are today being commercialized. These systems rely on the assumptions that training data and testing data share the same feature space, and residing from the same underlying distribution - which is commonly unrealistic in real-world applications. Instead, the use of transfer learning could be considered. In order to transfer knowledge between a source and a target domain these should be mapped to a common latent feature space. In this work, the dimensionality reduction algorithm t-SNE is used to map data to a similar feature space and is further investigated through a proposed novel analysis of output stability. The proposed analysis, Normalized Linear Procrustes Analysis (NLPA) extends the existing Procrustes and Local Procrustes algorithms for aligning manifolds. The methods are tested on data reflecting human behaviour patterns from data collected in a smart home environment. Results show high partial output stability for the t-SNE algorithm for the tested input data for which NLPA is able to detect clusters which are individually aligned and compared. The results highlight the importance of understanding output stability before incorporating dimensionality reduction algorithms into further computation, e.g. for transfer learning.

sted, utgiver, år, opplag, sider
2018.
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-38442OAI: oai:DiVA.org:hh-38442DiVA, id: diva2:1268394
Konferanse
The 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC2018), Miyazaki, Japan, Oct. 7-10, 2018
Prosjekter
SA3LTilgjengelig fra: 2018-12-05 Laget: 2018-12-05 Sist oppdatert: 2019-01-11bibliografisk kontrollert

Open Access i DiVA

tsne-stability(737 kB)53 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 737 kBChecksum SHA-512
51a3c04d90a1a03b800194f0f4f7042086fabf54f04eca37b19c145bd6363fccc22a74e0f68c5c5b810cec0853f3aeda3470c4e35d321553b8ebb73d20b32867
Type fulltextMimetype application/pdf

Personposter BETA

Ali Hamad, RebeenJärpe, EricLundström, Jens

Søk i DiVA

Av forfatter/redaktør
Ali Hamad, RebeenJärpe, EricLundström, Jens
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 53 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 284 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf