hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Learning Low-Dimensional Representation of Bivariate Histogram Data
Department of Information Systems, Kaunas University of Technology, Kaunas, Lithuania.
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0003-3272-4145
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-7796-5201
2018 (engelsk)Inngår i: IEEE transactions on intelligent transportation systems (Print), ISSN 1524-9050, E-ISSN 1558-0016, Vol. 19, nr 11, s. 3723-3735Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

With an increasing amount of data in intelligent transportation systems, methods are needed to automatically extract general representations that accurately predict not only known tasks but also similar tasks that can emerge in the future. Creation of low-dimensional representations can be unsupervised or can exploit various labels in multi-task learning (when goal tasks are known) or transfer learning (when they are not) settings. Finding a general, low-dimensional representation suitable for multiple tasks is an important step toward knowledge discovery in aware intelligent transportation systems. This paper evaluates several approaches mapping high-dimensional sensor data from Volvo trucks into a low-dimensional representation that is useful for prediction. Original data are bivariate histograms, with two types--turbocharger and engine--considered. Low-dimensional representations were evaluated in a supervised fashion by mean equal error rate (EER) using a random forest classifier on a set of 27 1-vs-Rest detection tasks. Results from unsupervised learning experiments indicate that using an autoencoder to create an intermediate representation, followed by $t$-distributed stochastic neighbor embedding, is the most effective way to create low-dimensional representation of the original bivariate histogram. Individually, $t$-distributed stochastic neighbor embedding offered best results for 2-D or 3-D and classical autoencoder for 6-D or 10-D representations. Using multi-task learning, combining unsupervised and supervised objectives on all 27 available tasks, resulted in 10-D representations with a significantly lower EER compared to the original 400-D data. In transfer learning setting, with topmost diverse tasks used for representation learning, 10-D representations achieved EER comparable to the original representation.

sted, utgiver, år, opplag, sider
Piscataway, NJ: IEEE, 2018. Vol. 19, nr 11, s. 3723-3735
Emneord [en]
Task analysis, Histograms, Engines, Intelligent transportation systems, Maintenance engineering, Machine learning, Feature extraction
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-38252DOI: 10.1109/TITS.2018.2865103ISI: 000449978100029Scopus ID: 2-s2.0-85053294183OAI: oai:DiVA.org:hh-38252DiVA, id: diva2:1260571
Tilgjengelig fra: 2018-11-04 Laget: 2018-11-04 Sist oppdatert: 2020-02-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Uličný, MatejPashami, SepidehNowaczyk, Sławomir

Søk i DiVA

Av forfatter/redaktør
Uličný, MatejPashami, SepidehNowaczyk, Sławomir
Av organisasjonen
I samme tidsskrift
IEEE transactions on intelligent transportation systems (Print)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 79 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf