hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Industrial Control System (ICS) Network Asset Identification and Risk Management
Högskolan i Halmstad, Akademin för informationsteknologi. (ITE)
Högskolan i Halmstad, Akademin för informationsteknologi. (ITE)
2018 (engelsk)Independent thesis Advanced level (degree of Master (One Year)), 10 poäng / 15 hpOppgave
Abstract [en]

Setting against the significant background of Industrial 4.0, the Industrial Control System (ICS) accelerates and enriches the upgrade the existing production infrastructure. To make the infrastructures “smart”, huge parts of manual operations have been automated in this upgrade and more importantly, the isolated controlled processes have been connected through ICS. This has also raised the issues in asset management and security concerns. Being the starting point of securing the ICS, the asset identification is, nevertheless, first dealt by exploring the definition of assets in the ICS domain due to insufficient documentation and followed by the introduction of ICS constituents and their statuses in the whole network. When the definition is clear, a well-received categorization of assets in the ICS domain is introduced, while mapping out their important attributes and their significance relating the core of service they perform. To effectively tackle the ever-increasing amount of assets, identification approaches are compared and a case study was performed to test the effectiveness of two open source software. Apart from the identification part, this thesis describes a framework for efficient asset management from CRR. The four cyclic modules proposed give an overview on how the asset management should be managed according the dynamics of the assets in the production environment.

sted, utgiver, år, opplag, sider
2018.
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-38198OAI: oai:DiVA.org:hh-38198DiVA, id: diva2:1258077
Utdanningsprogram
Master's Programme in Network Forensics, 60 credits
Veileder
Examiner
Tilgjengelig fra: 2018-10-26 Laget: 2018-10-23 Sist oppdatert: 2018-10-26bibliografisk kontrollert

Open Access i DiVA

fulltext(4379 kB)157 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 4379 kBChecksum SHA-512
47d3c1a8d732593ed989ea5d93119b6aa396a4e4686f58c551fc9a53c7cbda5325c54415ad8bd7b13dcca86512ab6245a6fde82de1b95678d108797e2c13e6e1
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 157 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 736 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf