hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improving the Quality of User Generated Data Sets for Activity Recognition
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab). University of Ulster, Jordanstown, North Ireland.
University of Ulster, Jordanstown, North Ireland.
Marche Polytechnic University, Ancona, Italy.
University of Ulster, Jordanstown, North Ireland.
Vise andre og tillknytning
2016 (engelsk)Inngår i: Ubiquitous Computing and Ambient Intelligence, UCAMI 2016, PT II / [ed] Garcia, CR CaballeroGil, P Burmester, M QuesadaArencibia, A, Amsterdam: Springer Publishing Company, 2016, s. 104-110Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

It is fully appreciated that progress in the development of data driven approaches to activity recognition are being hampered due to the lack of large scale, high quality, annotated data sets. In an effort to address this the Open Data Initiative (ODI) was conceived as a potential solution for the creation of shared resources for the collection and sharing of open data sets. As part of this process, an analysis was undertaken of datasets collected using a smart environment simulation tool. A noticeable difference was found in the first 1-2 cycles of users generating data. Further analysis demonstrated the effects that this had on the development of activity recognition models with a decrease of performance for both support vector machine and decision tree based classifiers. The outcome of the study has led to the production of a strategy to ensure an initial training phase is considered prior to full scale collection of the data.

sted, utgiver, år, opplag, sider
Amsterdam: Springer Publishing Company, 2016. s. 104-110
Serie
Lecture Notes in Computer Science, ISSN 0302-9743 ; 10070
Emneord [en]
Activity recognition, Open data sets, Data validation, Data driven classification
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-35659DOI: 10.1007/978-3-319-48799-1_13ISI: 000389507400013Scopus ID: 2-s2.0-85009788304ISBN: 978-3-319-48799-1 (digital)ISBN: 978-3-319-48798-4 (tryckt)OAI: oai:DiVA.org:hh-35659DiVA, id: diva2:1165293
Konferanse
10th International Conference on Ubiquitous Computing and Ambient Intelligence (UCAmI), NOV 29-DEC 02, 2016, San Bartolome de Tirajana, SPAIN
Tilgjengelig fra: 2017-12-13 Laget: 2017-12-13 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Nugent, ChristopherLundström, Jens

Søk i DiVA

Av forfatter/redaktør
Nugent, ChristopherLundström, Jens
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 102 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf