hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improving the Quality of User Generated Data Sets for Activity Recognition
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab). University of Ulster, Jordanstown, North Ireland.
University of Ulster, Jordanstown, North Ireland.
Marche Polytechnic University, Ancona, Italy.
University of Ulster, Jordanstown, North Ireland.
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: Ubiquitous Computing and Ambient Intelligence, UCAMI 2016, PT II / [ed] Garcia, CR CaballeroGil, P Burmester, M QuesadaArencibia, A, Amsterdam: Springer Publishing Company, 2016, s. 104-110Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

It is fully appreciated that progress in the development of data driven approaches to activity recognition are being hampered due to the lack of large scale, high quality, annotated data sets. In an effort to address this the Open Data Initiative (ODI) was conceived as a potential solution for the creation of shared resources for the collection and sharing of open data sets. As part of this process, an analysis was undertaken of datasets collected using a smart environment simulation tool. A noticeable difference was found in the first 1-2 cycles of users generating data. Further analysis demonstrated the effects that this had on the development of activity recognition models with a decrease of performance for both support vector machine and decision tree based classifiers. The outcome of the study has led to the production of a strategy to ensure an initial training phase is considered prior to full scale collection of the data.

Ort, förlag, år, upplaga, sidor
Amsterdam: Springer Publishing Company, 2016. s. 104-110
Serie
Lecture Notes in Computer Science, ISSN 0302-9743 ; 10070
Nyckelord [en]
Activity recognition, Open data sets, Data validation, Data driven classification
Nationell ämneskategori
Annan data- och informationsvetenskap Datavetenskap (datalogi) Mediateknik Datorsystem
Identifikatorer
URN: urn:nbn:se:hh:diva-35659DOI: 10.1007/978-3-319-48799-1_13ISI: 000389507400013Scopus ID: 2-s2.0-85009788304ISBN: 978-3-319-48799-1 (digital)ISBN: 978-3-319-48798-4 (tryckt)OAI: oai:DiVA.org:hh-35659DiVA, id: diva2:1165293
Konferens
10th International Conference on Ubiquitous Computing and Ambient Intelligence (UCAmI), NOV 29-DEC 02, 2016, San Bartolome de Tirajana, SPAIN
Tillgänglig från: 2017-12-13 Skapad: 2017-12-13 Senast uppdaterad: 2018-01-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Nugent, ChristopherLundström, Jens

Sök vidare i DiVA

Av författaren/redaktören
Nugent, ChristopherLundström, Jens
Av organisationen
CAISR Centrum för tillämpade intelligenta system (IS-lab)
Annan data- och informationsvetenskapDatavetenskap (datalogi)MediateknikDatorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 102 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf