hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Safety Analysis of Cooperative Adaptive Cruise Control in Vehicle Cut-in Situations
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES). The Swedish National Road and Transport Research Institute (VTI), Linköping, Sweden.
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research. RISE Viktoria, Göteborg, Sweden.ORCID iD: 0000-0002-1043-8773
The Swedish National Road and Transport Research Institute (VTI), Linköping, Sweden.
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
Show others and affiliations
2017 (English)In: Proceedings of 2017 4th International Symposium on Future Active Safety Technology towards Zero-Traffic-Accidents (FAST-zero), Society of Automotive Engineers of Japan , 2017, article id 20174621Conference paper, Published paper (Refereed)
Abstract [en]

Cooperative adaptive cruise control (CACC) is a cooperative intelligent transport systems (C-ITS) function, which especially when used in platooning applications, possess many expected benefits including efficient road space utilization and reduced fuel consumption. Cut-in manoeuvres in platoons can potentially reduce those benefits, and are not desired from a safety point of view. Unfortunately, in realistic traffic scenarios, cut-in manoeuvres can be expected, especially from non-connected vehicles. In this paper two different controllers for platooning are explored, aiming at maintaining the safety of the platoon while a vehicle is cutting in from the adjacent lane. A realistic scenario, where a human driver performs the cut-in manoeuvre is used to demonstrate the effectiveness of the controllers. Safety analysis of CACC controllers using time to collision (TTC) under such situation is presented. The analysis using TTC indicate that, although potential risks are always high in CACC applications such as platooning due to the small inter-vehicular distances, dangerous TTC (TTC < 6 seconds) is not frequent. Future research directions are also discussed along with the results.

Place, publisher, year, edition, pages
Society of Automotive Engineers of Japan , 2017. article id 20174621
Keywords [en]
cooperative adaptive cruise control, modelling and simulations
National Category
Computer Systems
Identifiers
URN: urn:nbn:se:hh:diva-35681OAI: oai:DiVA.org:hh-35681DiVA, id: diva2:1161852
Conference
4th International Symposium on Future Active Safety Technology towards Zero-Traffic-Accidents (FAST-Zero’17), Nara, Japan, 18-22 September, 2017
Funder
Knowledge FoundationAvailable from: 2017-12-01 Created: 2017-12-01 Last updated: 2018-11-20Bibliographically approved
In thesis
1. A Simulation-Based Safety Analysis of CACC-Enabled Highway Platooning
Open this publication in new window or tab >>A Simulation-Based Safety Analysis of CACC-Enabled Highway Platooning
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Cooperative Intelligent Transport Systems (C-ITS) enable actors in the transport systems to interact and collaborate by exchanging information via wireless communication networks. There are several challenges to overcome before they can be implemented and deployed on public roads. Among the most important challenges are testing and evaluation in order to ensure the safety of C-ITS applications.

This thesis focuses on testing and evaluation of C-ITS applications with regard to their safety using simulation. The main focus is on one C-ITS application, namely platooning, that is enabled by the Cooperative Adaptive Cruise Control (CACC) function. Therefore, this thesis considers two main topics: i) what should be modelled and simulated for testing and evaluation of C-ITS applications? and ii) how should CACC functions be evaluated in order to ensure safety?

When C-ITS applications are deployed, we can expect traffic situations which consist of vehicles with different capabilities, in terms of automation and connectivity. We propose that involving human drivers in testing and evaluation is important in such mixed traffic situations. Considering important aspects of C-ITS including human drivers, we propose a simulation framework, which combines driving-, network-, and traffic simulators. The simulation framework has been validated by demonstrating several use cases in the scope of platooning. In particular, it is used to demonstrate and analyse the safety of platooning applications in cut-in situations, where a vehicle driven by a human driver cuts in between vehicles in platoon. To assess the situations, time-to-collision (TTC) and its extensions are used as safety indicators in the analyses.

The simulation framework permits future C-ITS research in other fields such as human factors by involving human drivers in a C-ITS context. Results from the safety analyses show that cut-in situations are not always hazardous, and two factors that are the most highly correlated to the collisions are relative speed and distance between vehicles at the moment of cutting in. Moreover, we suggest that to solely rely on CACC functions is not sufficient to handle cut-in situations. Therefore, guidelines and standards are required to address these situations properly.

Place, publisher, year, edition, pages
Halmstad: Halmstad University Press, 2018. p. 103
Series
Halmstad University Dissertations ; 51
Keywords
simulation, driving simulator, traffic simulator, network simulator, C-ITS, cooperative intelligent transport systems, platooning
National Category
Computer Sciences Transport Systems and Logistics Other Electrical Engineering, Electronic Engineering, Information Engineering Engineering and Technology
Identifiers
urn:nbn:se:hh:diva-38390 (URN)978-91-88749-07-9 (ISBN)978-91-88749-08-6 (ISBN)
Public defence
2018-12-12, Wigforssalen, Hus J (Visionen), Halmstad University, Kristian IV:s väg 3, Halmstad, 10:15 (English)
Opponent
Supervisors
Available from: 2018-11-26 Created: 2018-11-20 Last updated: 2019-04-25Bibliographically approved

Open Access in DiVA

fulltext(1687 kB)105 downloads
File information
File name FULLTEXT02.pdfFile size 1687 kBChecksum SHA-512
979fb56e0ee5f5a59710a93604961e8d0e26efc384ff9b43229104a203b4155365034a983d8f4f548278930fd853c466c65b688f8886be9492d89dcf43edfccb
Type fulltextMimetype application/pdf

Authority records BETA

Aramrattana, MaytheewatEnglund, CristoferLarsson, Tony

Search in DiVA

By author/editor
Aramrattana, MaytheewatEnglund, CristoferLarsson, Tony
By organisation
Centre for Research on Embedded Systems (CERES)CAISR - Center for Applied Intelligent Systems Research
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 105 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 769 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf