hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Iris Super-Resolution Using Iterative Neighbor Embedding
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-1400-346X
University of Malta, Msida, Malta.
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-4929-1262
2017 (Engelska)Ingår i: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops / [ed] Lisa O’Conner, Los Alamitos: IEEE Computer Society, 2017, s. 655-663Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Iris recognition research is heading towards enabling more relaxed acquisition conditions. This has effects on the quality and resolution of acquired images, severely affecting the accuracy of recognition systems if not tackled appropriately. In this paper, we evaluate a super-resolution algorithm used to reconstruct iris images based on iterative neighbor embedding of local image patches which tries to represent input low-resolution patches while preserving the geometry of the original high-resolution space. To this end, the geometry of the low- and high-resolution manifolds are jointly considered during the reconstruction process. We validate the system with a database of 1,872 near-infrared iris images, while fusion of two iris comparators has been adopted to improve recognition performance. The presented approach is substantially superior to bilinear/bicubic interpolations at very low resolutions, and it also outperforms a previous PCA-based iris reconstruction approach which only considers the geometry of the low-resolution manifold during the reconstruction process. © 2017 IEEE

Ort, förlag, år, upplaga, sidor
Los Alamitos: IEEE Computer Society, 2017. s. 655-663
Nyckelord [en]
Iris recognition, Image reconstruction, Image resolution, Manifolds, Training, Databases, Iris
Nationell ämneskategori
Signalbehandling
Identifikatorer
URN: urn:nbn:se:hh:diva-33864DOI: 10.1109/CVPRW.2017.94Scopus ID: 2-s2.0-85030244663ISBN: 978-1-5386-0733-6 (digital)ISBN: 978-1-5386-0734-3 (tryckt)OAI: oai:DiVA.org:hh-33864DiVA, id: diva2:1096742
Konferens
International Conference on Computer Vision and Pattern Recognition, CVPR, IEEE Computer Society Workshop on Biometrics, Hawaii Convention Center HI, USA, 21-26 Jul, 2017
Projekt
SIDUS-AIR
Forskningsfinansiär
Vetenskapsrådet, 2012-4313KK-stiftelsen, SIDUSKK-stiftelsen, CAISRTillgänglig från: 2017-05-18 Skapad: 2017-05-18 Senast uppdaterad: 2017-12-14Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Alonso-Fernandez, FernandoBigun, Josef

Sök vidare i DiVA

Av författaren/redaktören
Alonso-Fernandez, FernandoBigun, Josef
Av organisationen
CAISR Centrum för tillämpade intelligenta system (IS-lab)
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 1116 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf