hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Learning of Aggregate Features for Comparing Drivers Based on Naturalistic Data
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-8797-5112
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-7796-5201
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0001-5163-2997
Volvo Group Trucks Technology, Göteborg, Sweden.
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: Proceedings: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA) / [ed] Lisa O’Conner, Los Alamitos, CA: IEEE Computer Society, 2016, s. 1067-1072Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Fuel used by heavy duty trucks is a major cost for logistics companies, and therefore improvements in this area are highly desired. Many of the factors that influence fuel consumption, such as the road type, vehicle configuration or external environment, are difficult to influence. One of the most under-explored ways to lower the costs is training and incentivizing drivers. However, today it is difficult to measure driver performance in a comprehensive way outside of controlled, experimental setting.

This paper proposes a machine learning methodology for quantifying and qualifying driver performance, with respect to fuel consumption, that is suitable for naturalistic driving situations. The approach is a knowledge-based feature extraction technique, constructing a normalizing fuel consumption value denoted Fuel under Predefined Conditions (FPC), which captures the effect of factors that are relevant but are not measured directly.

The FPC, together with information available from truck sensors, is then compared against the actual fuel used on a given road segment, quantifying the effects associated with driver behavior or other variables of interest. We show that raw fuel consumption is a biased measure of driver performance, being heavily influenced by other factors such as high load or adversary weather conditions, and that using FPC leads to more accurate results. In this paper we also show evaluation the proposed method using large-scale, real-world, naturalistic database of heavy-duty vehicle operation.

Ort, förlag, år, upplaga, sidor
Los Alamitos, CA: IEEE Computer Society, 2016. s. 1067-1072
Nyckelord [en]
data mining, expert features, heavy-duty vehicle, vehicle driver, truck driver, driver classification, feature extraction
Nationell ämneskategori
Datavetenskap (datalogi) Farkostteknik Transportteknik och logistik Infrastrukturteknik Tillämpad psykologi
Identifikatorer
URN: urn:nbn:se:hh:diva-33078DOI: 10.1109/ICMLA.2016.0194ISI: 000399100100185Scopus ID: 2-s2.0-85015439319ISBN: 978-1-5090-6166-2 (tryckt)OAI: oai:DiVA.org:hh-33078DiVA, id: diva2:1068979
Konferens
IEEE 15th International Conference on Machine Learning and Applications, ICMLA 2016, Anaheim, United States, 18-20 December, 2016
Tillgänglig från: 2017-01-26 Skapad: 2017-01-16 Senast uppdaterad: 2018-01-13Bibliografiskt granskad
Ingår i avhandling
1. Methods to quantify and qualify truck driver performance
Öppna denna publikation i ny flik eller fönster >>Methods to quantify and qualify truck driver performance
2017 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Fuel consumption is a major economical component of vehicles, particularly for heavy-duty vehicles. It is dependent on many factors, such as driver and environment, and control over some factors is present, e.g. route, and we can try to optimize others, e.g. driver. The driver is responsible for around 30% of the operational cost for the fleet operator and is therefore important to have efficient drivers as they also inuence fuel consumption which is another major cost, amounting to around 40% of vehicle operation. The difference between good and bad drivers can be substantial, depending on the environment, experience and other factors.

In this thesis, two methods are proposed that aim at quantifying and qualifying driver performance of heavy duty vehicles with respect to fuel consumption. The first method, Fuel under Predefined Conditions (FPC), makes use of domain knowledge in order to incorporate effect of factors which are not measured. Due to the complexity of the vehicles, many factors cannot be quantified precisely or even measured, e.g. wind speed and direction, tire pressure. For FPC to be feasible, several assumptions need to be made regarding unmeasured variables. The effect of said unmeasured variables has to be quantified, which is done by defining specific conditions that enable their estimation. Having calculated the effect of unmeasured variables, the contribution of measured variables can be estimated. All the steps are required to be able to calculate the influence of the driver. The second method, Accelerator Pedal Position - Engine Speed (APPES) seeks to qualify driver performance irrespective of the external factors by analyzing driver intention. APPES is a 2D histogram build from the two mentioned signals. Driver performance is expressed, in this case, using features calculated from APPES.

The focus of first method is to quantify fuel consumption, giving us the possibility to estimate driver performance. The second method is more skewed towards qualitative analysis allowing a better understanding of driver decisions and how they affect fuel consumption. Both methods have the ability to give transferable knowledge that can be used to improve driver's performance or automatic driving systems.

Throughout the thesis and attached articles we show that both methods are able to operate within the specified conditions and achieve the set goal.

Ort, förlag, år, upplaga, sidor
Halmstad: Halmstad University Press, 2017. s. 23
Serie
Halmstad University Dissertations ; 28
Nyckelord
Driver performance, heavy-duty vehicle, fuel economy, fuel consumption, fuel prediction, truck driver
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
urn:nbn:se:hh:diva-33229 (URN)978-91-87045-59-2 (ISBN)978-91-87045-58-5 (ISBN)
Presentation
2017-02-10, Wigforssalen, Visionen, Kristian IV:s väg 3, Halmstad, 13:40 (Engelska)
Opponent
Handledare
Tillgänglig från: 2017-02-08 Skapad: 2017-02-07 Senast uppdaterad: 2018-01-13Bibliografiskt granskad

Open Access i DiVA

fulltext(474 kB)219 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 474 kBChecksumma SHA-512
c7eae8775b42bd155523c957fc50cb9b323dc00009e123dc9901321d12622a7a661cce6bde41196cfe1cb8f6fc08b8d872efa11250538ee6f0de75fc80d2aa16
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Carpatorea, IulianSlawomir, NowaczykRögnvaldsson, Thorsteinn

Sök vidare i DiVA

Av författaren/redaktören
Carpatorea, IulianSlawomir, NowaczykRögnvaldsson, Thorsteinn
Av organisationen
CAISR Centrum för tillämpade intelligenta system (IS-lab)
Datavetenskap (datalogi)FarkostteknikTransportteknik och logistikInfrastrukturteknikTillämpad psykologi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 219 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 499 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf