hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Bias-dependent spectral tuning in InP nanowire-based photodetectors
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and Nano, Lund University, Lund, Sweden. (Nanovetenskap)ORCID-id: 0000-0001-5993-8106
Solid State Physics and Nano, Lund University, Lund, Sweden. (Nanometerkonsortiet)
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and Nano, Lund University, Lund, Sweden. (Nanovetenskap)ORCID-id: 0000-0002-3160-8540
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and Nano, Lund University, Lund, Sweden. (Nanovetenskap)
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 28, nr 11, artikel-id 114006Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Nanowire array ensembles contacted in a vertical geometry are extensively studied and considered strong candidates for next generations of industrial scale optoelectronics. Key challenges in this development deal with optimization of the doping profile of the nanowires and the interface between nanowires and transparent top contact. Here we report on photodetection characteristics associated with doping profile variations in InP nanowire array photodetectors. Bias-dependent tuning of the spectral shape of the responsivity is observed which is attributed to a Schottky-like contact at the nanowire-ITO interface. Angular dependent responsivity measurements, compared with simulated absorption spectra, support this conclusion. Furthermore, electrical simulations unravel the role of possible self-gating effects in the nanowires induced by the ITO/SiOx wrap-gate geometry. Finally, we discuss possible reasons for the observed low saturation current at large forward biases.  

Ort, förlag, år, upplaga, sidor
Bristol: Institute of Physics Publishing (IOPP), 2017. Vol. 28, nr 11, artikel-id 114006
Nyckelord [en]
nanowires, nanowire arrays, IR photodetectors, solar cells, nanophotonics
Nationell ämneskategori
Den kondenserade materiens fysik
Identifikatorer
URN: urn:nbn:se:hh:diva-32769DOI: 10.1088/1361-6528/aa5236ISI: 000395937500001Scopus ID: 2-s2.0-85014564717OAI: oai:DiVA.org:hh-32769DiVA, id: diva2:1058350
Tillgänglig från: 2016-12-20 Skapad: 2016-12-20 Senast uppdaterad: 2018-04-25Bibliografiskt granskad
Ingår i avhandling
1. Tailoring the Optical Response of III-V Nanowire Arrays
Öppna denna publikation i ny flik eller fönster >>Tailoring the Optical Response of III-V Nanowire Arrays
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Semiconductor nanowires show a great deal of promise for applications in a wide range of important fields, including photovoltaics, biomedicine, and information technology. Developing these exciting applications is strongly dependent on understanding the fundamental properties of nanowires, such as their optical resonances and absorption spectra. In this thesis we explore optical absorption spectra of arrays of vertical III-V nanowires with a special emphasis on structures optimized to enhance absorption in the solar spectrum. First, we analyze experimentally determined absorption spectra of both indium phosphide (InP) and gallium phosphide (GaP) nanowire arrays. The study provides an intuitive understanding of how the observed absorption resonances in the nanowires may be tuned as a function of their geometrical parameters and crystal structure. As a consequence, the spectral position of absorption resonances can be precisely controlled through the nanowire diameter. However, the results highlight how the blue-shift in the optical absorption resonances as the diameter of the nanowires decreases comes to a halt at low diameters. The stop point is related to the behavior of the refractive indices of the nanowires. The wavelength of the stop is different for nanowire polytypes of similar dimensions due to differences in their refractive indices. We then present a theoretical argument that it is important to consider symmetry properties when tailoring the optical modes excited in the nanowires for enhanced absorption. We show that absorption spectra may be enhanced compared to vertical nanowires at normal incidence by tilting the nanowires with normal incidence light, or by using off-normal incidence with vertical nanowires. This is because additional optical modes inside the nanowires are excited when the symmetry is broken. Looking forward to omnidirectional applications, we consider branched nanowires as a way to enhance the absorption spectra at normal incidence by taking advantage of simultaneous excitation of the spectrally different optical modes in the branches and the stems. Third, we describe in theoretical terms how integrating distributed Bragg reflectors (DBRs) with the nanowires can improve absorption spectra compared to conventional nanowires. DBRs provide a way to employ light trapping mechanisms which increases the optical path length of the excited modes and thereby improves the absorption of the excited modes. At normal incidence, DBR-nanowires improve the absorption efficiency to 78%, compared to 72% for conventional nanowires. We show that the efficiency is increased to 85% for an off-normal incident angle of 50˚. Overall, our results show that studies of optical resonances in nanowires that take the light-matter interaction into account provide opportunities to develop novel optical and optoelectronic functionalities in nanoscience and nanotechnology.

Ort, förlag, år, upplaga, sidor
Lund: Lund University, 2017. s. 63
Nyckelord
III-V nanowires, absorption, optical modes, photovoltaics
Nationell ämneskategori
Den kondenserade materiens fysik
Identifikatorer
urn:nbn:se:hh:diva-36683 (URN)978-91-7753-277-4 (ISBN)978-91-7753-278-1 (ISBN)
Disputation
2017-06-02, Rydbergsalen, Fysicum, Sölvegatan 14, Lund, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-05-03 Skapad: 2018-04-25 Senast uppdaterad: 2018-05-03Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Jain, VishalKarimi, MohammadHussain, LaiqPettersson, Håkan

Sök vidare i DiVA

Av författaren/redaktören
Jain, VishalKarimi, MohammadHussain, LaiqPettersson, Håkan
Av organisationen
Tillämpad matematik och fysik (MPE-lab)
I samma tidskrift
Nanotechnology
Den kondenserade materiens fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 681 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf