hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
IrisSeg: A Fast and Robust Iris Segmentation Framework for Non-Ideal Iris Images
Centre for Development of Advanced Computing (CDAC), Mumbai, India.
Centre for Development of Advanced Computing (CDAC), Mumbai, India.
Centre for Development of Advanced Computing (CDAC), Mumbai, India.
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-1400-346X
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: 2016 INTERNATIONAL CONFERENCE ON BIOMETRICS (ICB) / [ed] J. Fierrez, S.Z. Li, A. Ross, R. Veldhuis, F. Alonso-Fernandez, J. Bigun, Piscataway: IEEE, 2016Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper presents a state-of-the-art iris segmentation framework specifically for non-ideal irises. The framework adopts coarse-to-fine strategy to localize different boundaries. In the approach, pupil is coarsely detected using an iterative search method exploiting dynamic thresholding and multiple local cues. The limbic boundary is first approximated in polar space using adaptive filters and then refined in Cartesianspace. The framework is quite robust and unlike the previously reported works, does notrequire tuning of parameters for different databases. The segmentation accuracy (SA) is evaluated using well known measures; precision, recall and F-measure, using the publicly available ground truth data for challenging iris databases; CASIAV4-Interval, ND-IRIS-0405, and IITD. In addition, the approach is also evaluated on highly challenging periocular images of FOCS database. The validity of proposed framework is also ascertained by providing comprehensive comparisons with classical approaches as well asstate-of-the-art methods such as; CAHT, WAHET, IFFP, GST and Osiris v4.1. The results demonstrate that our approach provides significant improvements in segmentation accuracy as well as in recognition performance that too with lower computational complexity. © 2016 IEEE.

Ort, förlag, år, upplaga, sidor
Piscataway: IEEE, 2016.
Serie
International Conference on Biometrics, ISSN 2376-4201
Nationell ämneskategori
Signalbehandling
Identifikatorer
URN: urn:nbn:se:hh:diva-31745DOI: 10.1109/ICB.2016.7550096ISI: 000390841200050Scopus ID: 2-s2.0-84988372923ISBN: 978-1-5090-1869-7 (tryckt)OAI: oai:DiVA.org:hh-31745DiVA, id: diva2:952046
Konferens
9th IAPR International Conference on Biometrics, Halmstad, Sweden, June 13-16, 2016
Forskningsfinansiär
VetenskapsrådetTillgänglig från: 2016-08-11 Skapad: 2016-08-11 Senast uppdaterad: 2017-12-01Bibliografiskt granskad

Open Access i DiVA

fulltext(1556 kB)650 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1556 kBChecksumma SHA-512
9567e4e8ced2c47841e9bd023db3cc224806c00bb36d90322319b87042f2542ab2dc904601fd5baf53381c6a4888221a901ebab76b3057d5b0399d524135e2bf
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Alonso-Fernandez, FernandoBigun, Josef

Sök vidare i DiVA

Av författaren/redaktören
Alonso-Fernandez, FernandoBigun, Josef
Av organisationen
CAISR Centrum för tillämpade intelligenta system (IS-lab)
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 650 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 279 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf