hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting Air Compressor Failures with Echo State Networks
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-3034-6630
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-7796-5201
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0001-5163-2997
Federal University of Santa Catarina, Florianópolis, Brazil.
2016 (Engelska)Ingår i: PHME 2016: Proceedings of the Third European Conference of the Prognostics and Health Management Society 2016 / [ed] Ioana Eballard, Anibal Bregon, PHM Society , 2016, s. 568-578Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Modern vehicles have increasing amounts of data streaming continuously on-board their controller area networks. These data are primarily used for controlling the vehicle and for feedback to the driver, but they can also be exploited to detect faults and predict failures. The traditional diagnostics paradigm, which relies heavily on human expert knowledge, scales poorly with the increasing amounts of data generated by highly digitised systems. The next generation of equipment monitoring and maintenance prediction solutions will therefore require a different approach, where systems can build up knowledge (semi-)autonomously and learn over the lifetime of the equipment.

A key feature in such systems is the ability to capture and encode characteristics of signals, or groups of signals, on-board vehicles using different models. Methods that do this robustly and reliably can be used to describe and compare the operation of the vehicle to previous time periods or to other similar vehicles. In this paper two models for doing this, for a single signal, are presented and compared on a case of on-road failures caused by air compressor faults in city buses. One approach is based on histograms and the other is based on echo state networks. It is shown that both methods are sensitive to the expected changes in the signal's characteristics and work well on simulated data. However, the histogram model, despite being simpler, handles the deviations in real data better than the echo state network.

Ort, förlag, år, upplaga, sidor
PHM Society , 2016. s. 568-578
Nyckelord [en]
predictive maintenance, fault detection, Vehicle diagnostics, reservoir model, echo state network
Nationell ämneskategori
Farkostteknik
Identifikatorer
URN: urn:nbn:se:hh:diva-31644ISBN: 978-1-936263-21-9 OAI: oai:DiVA.org:hh-31644DiVA, id: diva2:948970
Konferens
Third European Conference of the Prognostics and Health Management Society 2016, Bilbao, Spain, 5-8 July, 2016
Projekt
In4Uptime
Forskningsfinansiär
VINNOVATillgänglig från: 2016-07-14 Skapad: 2016-07-14 Senast uppdaterad: 2016-11-28Bibliografiskt granskad
Ingår i avhandling
1. A Self-Organized Fault Detection Method for Vehicle Fleets
Öppna denna publikation i ny flik eller fönster >>A Self-Organized Fault Detection Method for Vehicle Fleets
2016 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

A fleet of commercial heavy-duty vehicles is a very interesting application arena for fault detection and predictive maintenance. With a highly digitized electronic system and hundreds of sensors mounted on-board a modern bus, a huge amount of data is generated from daily operations.

This thesis and appended papers present a study of an autonomous framework for fault detection, using the data gathered from the regular operation of vehicles. We employed an unsupervised deviation detection method, called Consensus Self-Organising Models (COSMO), which is based on the concept of ‘wisdom of the crowd’. It assumes that the majority of the group is ‘healthy’; by comparing individual units within the group, deviations from the majority can be considered as potentially ‘faulty’. Information regarding detected anomalies can be utilized to prevent unplanned stops.

This thesis demonstrates how knowledge useful for detecting faults and predicting failures can be autonomously generated based on the COSMO method, using different generic data representations. The case study in this work focuses on vehicle air system problems of a commercial fleet of city buses. We propose an approach to evaluate the COSMO method and show that it is capable of detecting various faults and indicates upcoming air compressor failures. A comparison of the proposed method with an expert knowledge based system shows that both methods perform equally well. The thesis also analyses the usage and potential benefits of using the Echo State Network as a generic data representation for the COSMO method and demonstrates the capability of Echo State Network to capture interesting characteristics in detecting different types of faults.

Ort, förlag, år, upplaga, sidor
Halmstad: Halmstad University Press, 2016. s. 116
Serie
Halmstad University Dissertations ; 27
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
urn:nbn:se:hh:diva-32489 (URN)978-91-87045-57-8 (ISBN)978-91-87045-56-1 (ISBN)
Presentation
2016-12-16, Halda, Kristian IV:s väg 3, 301 18 Halmstad, Halmstad, 10:00 (Engelska)
Opponent
Handledare
Projekt
In4Uptime
Forskningsfinansiär
VINNOVA
Tillgänglig från: 2016-11-28 Skapad: 2016-11-25 Senast uppdaterad: 2016-11-28Bibliografiskt granskad

Open Access i DiVA

fulltext(4071 kB)145 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 4071 kBChecksumma SHA-512
24c745f18b4406514ed2bf59c1a2d19a3ab9ead3efa7fc26ab4899d72d73d2a19c1a624fa6c053d0565e3f8b29a56a28cae8ad24b1546bd5130a5266596fefaf
Typ fulltextMimetyp application/pdf

Övriga länkar

Proceedings

Personposter BETA

Fan, YuantaoNowaczyk, SławomirRögnvaldsson, Thorsteinn

Sök vidare i DiVA

Av författaren/redaktören
Fan, YuantaoNowaczyk, SławomirRögnvaldsson, Thorsteinn
Av organisationen
CAISR Centrum för tillämpade intelligenta system (IS-lab)
Farkostteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 145 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 755 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf