hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Detecting and exploring deviating behaviour of people in their own homes
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0001-8804-5884
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0003-2185-8973
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

A system for detecting deviating human behaviour in a smart home environment is the long-term goal of this work. It is believed that such systems will be very important in ambient assisted living services. Three types of deviations are considered in this work: deviation in activity intensity, deviation in time and deviation in space. Detection of deviations in activity intensity is formulated as the on-line quickest detection of a parameter shift in a sequence of independent Poisson random variables. Random forests trained in an unsupervised fashion are used to learn the spatial and temporal structure of data representing normal behaviour and are thereafter utilised to find deviations.The experimental investigations have shown that the Page and Shiryaev change-point detection methods are preferable in terms of expected delay of motivated alarm. Interestingly only a little is lost when the methods are specified with estimated intensity parameters rather than the true intensity values which are not available in a real situation. As to the spatial and temporal deviations, they can be revealed through analysis of a 2D map of high dimensional data. It was demonstrated that such a map is stable in terms of the number of clusters formed. We have shown that the data clusters can be understood/explored by finding the most important variables and by analysing the structure of the most representative tree.

Nationell ämneskategori
Signalbehandling
Identifikatorer
URN: urn:nbn:se:hh:diva-25317OAI: oai:DiVA.org:hh-25317DiVA, id: diva2:716356
Projekt
SA3L - Situation Awareness for Ambient Assisted Living
Forskningsfinansiär
KK-stiftelsen
Anmärkning

Som manuskript i avhandling. As manuscript in dissertation.

Tillgänglig från: 2014-05-09 Skapad: 2014-05-09 Senast uppdaterad: 2018-03-22Bibliografiskt granskad
Ingår i avhandling
1. Situation Awareness in Colour Printing and Beyond
Öppna denna publikation i ny flik eller fönster >>Situation Awareness in Colour Printing and Beyond
2014 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Machine learning methods are increasingly being used to solve real-world problems in the society. Often, the complexity of the methods are well hidden for users. However, integrating machine learning methods in real-world applications is not a straightforward process and requires knowledge both about the methods and domain knowledge of the problem. Two such domains are colour print quality assessment and anomaly detection in smart homes, which are currently driven by manual monitoring of complex situations. The goal of the presented work is to develop methods, algorithms and tools to facilitate monitoring and understanding of the complex situations which arise in colour print quality assessment and anomaly detection for smart homes. The proposed approach builds on the use and adaption of supervised and unsupervised machine learning methods.

Novel algorithms for computing objective measures of print quality in production are proposed in this work. Objective measures are also modelled to study how paper and press parameters influence print quality. Moreover, a study on how print quality is perceived by humans is presented and experiments aiming to understand how subjective assessments of print quality relate to objective measurements are explained. The obtained results show that the objective measures reflect important aspects of print quality, these measures are also modelled with reasonable accuracy using paper and press parameters. The models of objective  measures are shown to reveal relationships consistent to known print quality phenomena.

In the second part of this thesis the application area of anomaly detection in smart homes is explored. A method for modelling human behaviour patterns is proposed. The model is used in order to detect deviating behaviour patterns using contextual information from both time and space. The proposed behaviour pattern model is tested using simulated data and is shown to be suitable given four types of scenarios.

The thesis shows that parts of offset lithographic printing, which traditionally is a human-centered process, can be automated by the introduction of image processing and machine learning methods. Moreover, it is concluded that in order to facilitate robust and accurate anomaly detection in smart homes, a holistic approach which makes use of several contextual aspects is required.

Ort, förlag, år, upplaga, sidor
Halmstad: Halmstad University Press, 2014. s. 51
Serie
Halmstad University Dissertations ; 6
Nyckelord
Machine learning, Data mining, Colour printing, Smart homes
Nationell ämneskategori
Signalbehandling
Identifikatorer
urn:nbn:se:hh:diva-25318 (URN)978-91-87045-12-7 (ISBN)978-91-87045-11-0 (ISBN)
Disputation
2014-06-13, Wigforssalen, Visionen, Kristian IV:s väg 3, Halmstad, 13:15 (Engelska)
Opponent
Handledare
Projekt
PPQSA3L
Forskningsfinansiär
KK-stiftelsen
Tillgänglig från: 2014-05-09 Skapad: 2014-05-09 Senast uppdaterad: 2015-09-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Lundström, JensJärpe, EricVerikas, Antanas

Sök vidare i DiVA

Av författaren/redaktören
Lundström, JensJärpe, EricVerikas, Antanas
Av organisationen
CAISR Centrum för tillämpade intelligenta system (IS-lab)
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 365 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf