hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Exploting Periocular and RGB Information in Fake Iris Detection
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-1400-346X
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-4929-1262
2014 (Engelska)Ingår i: 2014 37th International Conventionon Information and Communication Technology, Electronics and Microelectronics (MIPRO): 26 – 30 May 2014 Opatija, Croatia: Proceedings / [ed] Petar Biljanovic, Zeljko Butkovic, Karolj Skala, Stjepan Golubic, Marina Cicin-Sain, Vlado Sruk, Slobodan Ribaric, Stjepan Gros, Boris Vrdoljak, Mladen Mauher & Goran Cetusic, Rijeka: Croatian Society for Information and Communication Technology, Electronics and Microelectronics - MIPRO , 2014, s. 1354-1359Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Fake iris detection has been studied by several researchers. However, to date, the experimental setup has been limited to near-infrared (NIR) sensors, which provide grey-scale images. This work makes use of images captured in visible range with color (RGB) information. We employ Gray-Level CoOccurrence textural features and SVM classifiers for the task of fake iris detection. The best features are selected with the Sequential Forward Floating Selection (SFFS) algorithm. To the best of our knowledge, this is the first work evaluating spoofing attack using color iris images in visible range. Our results demonstrate that the use of features from the three color channels clearly outperform the accuracy obtained from the luminance (gray scale) image. Also, the R channel is found to be the best individual channel. Lastly, we analyze the effect of extracting features from selected (eye or periocular) regions only. The best performance is obtained when GLCM features are extracted from the whole image, highlighting that both the iris and the surrounding periocular region are relevant for fake iris detection. An added advantage is that no accurate iris segmentation is needed. This work is relevant due to the increasing prevalence of more relaxed scenarios where iris acquisition using NIR light is unfeasible (e.g. distant acquisition or mobile devices), which are putting high pressure in the development of algorithms capable of working with visible light. © 2014 MIPRO.

Ort, förlag, år, upplaga, sidor
Rijeka: Croatian Society for Information and Communication Technology, Electronics and Microelectronics - MIPRO , 2014. s. 1354-1359
Nyckelord [en]
Feature extraction, Iris recognition, Iris, Image color analysis, Support vector machines, Databases, Accuracy
Nationell ämneskategori
Signalbehandling
Identifikatorer
URN: urn:nbn:se:hh:diva-25120DOI: 10.1109/MIPRO.2014.6859778ISI: 000346438700258Scopus ID: 2-s2.0-84906920702ISBN: 978-953-233-081-6 (tryckt)OAI: oai:DiVA.org:hh-25120DiVA, id: diva2:713046
Konferens
37th International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO, Special Session on Biometrics & Forensics & De-identification and Privacy Protection, BiForD, Opatija, Croatia, 26-30th May, 2014
Projekt
BBfor2
Forskningsfinansiär
Vetenskapsrådet, 2012-4313
Anmärkning

Article number: 6859778; F. A.-F. thanks the Swedish Research Council and the EU for funding his postdoctoral work. Authors acknowledge the CAISR program of the Swedish Knowledge Foundation, the EU BBfor2 project and the EU COST Action IC1106.

Tillgänglig från: 2014-04-17 Skapad: 2014-04-17 Senast uppdaterad: 2018-03-22Bibliografiskt granskad

Open Access i DiVA

fulltext(726 kB)157 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 726 kBChecksumma SHA-512
d52149a41a131f3283865257a707c208098b7f1ea0c8ba4439cf32a4c83a5c9315c463cee5ed89c12cf757f82addcb93ca85dff38d794ab07fdb94351b2414b8
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Alonso-Fernandez, FernandoBigun, Josef

Sök vidare i DiVA

Av författaren/redaktören
Alonso-Fernandez, FernandoBigun, Josef
Av organisationen
CAISR Centrum för tillämpade intelligenta system (IS-lab)
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 159 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 770 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf