hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automated image analysis- and soft computing-based detection of the invasive dinoflagellate Prorocentrum minimum (Pavillard) Schiller
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Intelligenta system (IS-lab).ORCID-id: 0000-0003-2185-8973
Kaunas University of Technology, Kaunas, Lithuania .
Kaunas University of Technology, Kaunas, Lithuania .
Klaipeda University, Kaunas, Lithuania.
Visa övriga samt affilieringar
2012 (Engelska)Ingår i: Expert systems with applications, ISSN 0957-4174, E-ISSN 1873-6793, Vol. 39, nr 5, s. 6069-6077Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A long term goal of this work is an automated system for image analysis- and soft computing-based detection, recognition, and derivation of quantitative concentration estimates of different phytoplankton species using a simple imaging system. This article is limited, however, to detection of objects in phytoplankton images, especially objects representing one invasive species-Prorocentrum minimum (P. minimum), which is known to cause harmful blooms in many estuarine and coastal environments. A new technique, combining phase congruency-based detection of circular objects, stochastic optimization, and image segmentation was developed for solving the task. The developed algorithms were tested using 114 images of 1280 × 960 pixels size recorded by a colour camera. There were 2088 objects representing P. minimum cells in the images in total. The algorithms were able to detect 93.25% of the objects. Bearing in mind simplicity of the imaging system used the result is rather encouraging and may be applied for future development of the algorithms aimed at automated classification of objects into classes representing different phytoplankton species. © 2011 Elsevier Ltd. All rights reserved.

Ort, förlag, år, upplaga, sidor
Amsterdam: Elsevier, 2012. Vol. 39, nr 5, s. 6069-6077
Nyckelord [en]
Image preprocessing, Phase congruency, Detection of circular objects, Stochastic optimization, Phytoplankton
Nationell ämneskategori
Datorseende och robotik (autonoma system)
Identifikatorer
URN: urn:nbn:se:hh:diva-16646DOI: 10.1016/j.eswa.2011.12.006ISI: 000301155300146Scopus ID: 2-s2.0-84855901953OAI: oai:DiVA.org:hh-16646DiVA, id: diva2:461861
Anmärkning

Funding: Grant (No. LEK-05/2010) from the Research Council of Lithuania.

Tillgänglig från: 2011-12-05 Skapad: 2011-12-05 Senast uppdaterad: 2018-01-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Verikas, Antanas

Sök vidare i DiVA

Av författaren/redaktören
Verikas, Antanas
Av organisationen
Intelligenta system (IS-lab)
I samma tidskrift
Expert systems with applications
Datorseende och robotik (autonoma system)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 196 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf