hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A new measure of movement symmetry in early Parkinson's disease patients using symbolic processing of inertial sensor data
Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Laboratoriet för intelligenta system.ORCID-id: 0000-0002-3495-2961
Oregon Health and Science Univeristy. (Balance Disorders Laboratory)
Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Laboratoriet för intelligenta system.ORCID-id: 0000-0002-4143-2948
2011 (Engelska)Ingår i: IEEE Transactions on Biomedical Engineering, ISSN 0018-9294, E-ISSN 1558-2531, Vol. 58, nr 7, s. 2127-2135Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Movement asymmetry is one of the motor symptoms associated with Parkinson's Disease (PD). Therefore, being able to detect and measure movement symmetry is important for monitoring the patient's condition.

The present paper introduces a novel symbol based symmetry index calculated from inertial sensor data. The method is explained, evaluated and compared to six other symmetry measures. These measures were used to determine the symmetry of both upper and lower limbs during walking of 11 early-to-mid-stage PD patients and 15 control subjects. The patients included in the study showed minimal motor abnormalities according to the Unified Parkinson's Disease Rating Scale (UPDRS).

The symmetry indices were used to classify subjects into two different groups corresponding to PD or control. The proposed method presented high sensitivity and specificity with an area under the Receiver Operating Characteristic (ROC) curve of 0.872, 9\% greater than the second best method. The proposed method also showed an excellent Intraclass Correlation Coefficient (ICC) of 0.949, 55\% greater than the second best method. Results suggest that the proposed symmetry index is appropriate for this particular group of patients.

Ort, förlag, år, upplaga, sidor
Piscataway, N.J.: IEEE , 2011. Vol. 58, nr 7, s. 2127-2135
Nyckelord [en]
gyroscope, Parkinson's disease, symbolization, symmetry
Nationell ämneskategori
Reglerteknik
Identifikatorer
URN: urn:nbn:se:hh:diva-15675DOI: 10.1109/TBME.2011.2149521ISI: 000291890000028PubMedID: 21536527Scopus ID: 2-s2.0-79959570629OAI: oai:DiVA.org:hh-15675DiVA, id: diva2:427611
Anmärkning
©2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.Tillgänglig från: 2011-09-09 Skapad: 2011-06-28 Senast uppdaterad: 2017-12-11Bibliografiskt granskad
Ingår i avhandling
1. A Symbolic Approach to Human Motion Analysis Using Inertial Sensors: Framework and Gait Analysis Study
Öppna denna publikation i ny flik eller fönster >>A Symbolic Approach to Human Motion Analysis Using Inertial Sensors: Framework and Gait Analysis Study
2012 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Motion analysis deals with determining what and how activities are being performed by a subject, through the use of sensors. The process of answering the what question is commonly known as classification, and answering the how question is here referred to as characterization. Frequently, combinations of inertial sensor such as accelerometers and gyroscopes are used for motion analysis. These sensors are cheap, small, and can easily be incorporated into wearable systems.

The overall goal of this thesis was to improve the processing of inertial sensor data for the characterization of movements. This thesis presents a framework for the development of motion analysis systems that targets movement characterization, and describes an implementation of the framework for gait analysis. One substantial aspect of the framework is symbolization, which transforms the sensor data into strings of symbols. Another aspect of the framework is the inclusion of human expert knowledge, which facilitates the connection between data and human concepts, and clarifies the analysis process to a human expert.

The proposed implementation was compared to state of practice gait analysis systems, and evaluated in a clinical environment. Results showed that expert knowledge can be successfully used to parse symbolic data and identify the different phases of gait. In addition, the symbolic representation enabled the creation of new gait symmetry and gait normality indices. The proposed symmetry index was superior to many others in detecting movement asymmetry in early-to-mid-stage Parkinson's Disease patients. Furthermore, the normality index showed potential in the assessment of patient recovery after hip-replacement surgery. In conclusion, this implementation of the gait analysis system illustrated that the framework can be used as a road map for the development of movement analysis systems.

Ort, förlag, år, upplaga, sidor
Halmstad: Halmstad University, 2012. s. 52
Serie
Halmstad University Dissertations ; 2
Nyckelord
symbolization, expert knowledge, gait analysis, inertial sensors
Nationell ämneskategori
Annan elektroteknik och elektronik
Identifikatorer
urn:nbn:se:hh:diva-17523 (URN)978-91-87045-01-1 (ISBN)
Disputation
2012-04-13, Wigforssalen, Halmstad University, Halmstad, 15:49 (Engelska)
Opponent
Handledare
Tillgänglig från: 2012-04-18 Skapad: 2012-04-17 Senast uppdaterad: 2016-03-09Bibliografiskt granskad

Open Access i DiVA

SantAnna2011(953 kB)1223 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 953 kBChecksumma SHA-512
a4a97ecf544826c48450f2b5f71c28bd8e60f0e044c6ba998f2daea0b47beaa431d51c3d50223c0eb608698c7dcdf0ac4efefe59836619f21c96b460512d0657
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Sant'Anna, AnitaWickström, Nicholas

Sök vidare i DiVA

Av författaren/redaktören
Sant'Anna, AnitaWickström, Nicholas
Av organisationen
Laboratoriet för intelligenta system
I samma tidskrift
IEEE Transactions on Biomedical Engineering
Reglerteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 1223 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 647 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf