hh.sePublikationer
Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predictive analytics support for complex chronic medical conditions: An experience-based co-design study of physician managers’ needs and preferences
Karolinska Institutet, Stockholm, Sweden.
Karolinska Institutet, Stockholm, Sweden; Södertälje Hospital, Södertälje, Sweden.
Karolinska Institutet, Stockholm, Sweden; Nordic Artificial Intelligence Institute, Stockholm, Sweden.
Karolinska Institutet, Stockholm, Sweden; Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden.
Visa övriga samt affilieringar
2024 (Engelska)Ingår i: International Journal of Medical Informatics, ISSN 1386-5056, E-ISSN 1872-8243, Vol. 187, s. 1-9, artikel-id 105447Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Purpose: The literature suggests predictive technology applications in health care would benefit from physician and manager input during design and development. The aim was to explore the needs and preferences of physician managers regarding the role of predictive analytics in decision support for patients with the highly complex yet common combination of multiple chronic conditions of cardiovascular (Heart) and kidney (Nephrology) diseases and diabetes (HND). Methods: This qualitative study employed an experience-based co-design model comprised of three data gathering phases: 1. Patient mapping through non-participant observations informed by process mining of electronic health records data, 2. Semi-structured experience-based interviews, and 3. A co-design workshop. Data collection was conducted with physician managers working at or collaborating with the HND center, Danderyd University Hospital (DSAB), in Stockholm, Sweden. HND center is an integrated practice unit offering comprehensive person-centered multidisciplinary care to stabilize disease progression, reduce visits, and develop treatment strategies that enables a transition to primary care. Results: Interview and workshop data described a complex challenge due to the interaction of underlying pathophysiologies and the subsequent need for multiple care givers that hindered care continuity. The HND center partly met this challenge by coordinating care through multiple interprofessional and interdisciplinary shared decision-making interfaces. The large patient datasets were difficult to operationalize in daily practice due to data entry and retrieval issues. Predictive analytics was seen as a potentially effective approach to support decision-making, calculate risks, and improve resource utilization, especially in the context of complex chronic care, and the HND center a good place for pilot testing and development. Simplicity of visual interfaces, a better understanding of the algorithms by the health care professionals, and the need to address professional concerns, were identified as key factors to increase adoption and facilitate implementation. Conclusions: The HND center serves as a comprehensive integrated practice unit that integrates different medical disciplinary perspectives in a person-centered care process to address the needs of patients with multiple complex comorbidities. Therefore, piloting predictive technologies at the same time with a high potential for improving care represents an extreme, demanding, and complex case. The study findings show that health care professionals’ involvement in the design of predictive technologies right from the outset can facilitate the implementation and adoption of such technologies, as well as enhance their predictive effectiveness and performance. Simplicity in the design of predictive technologies and better understanding of the concept and interpretation of the algorithms may result in implementation of predictive technologies in health care. Institutional efforts are needed to enhance collaboration among the health care professionals and IT professionals for effective development, implementation, and adoption of predictive analytics in health care. © 2024 The Author(s)

Ort, förlag, år, upplaga, sidor
Shannon: Elsevier, 2024. Vol. 187, s. 1-9, artikel-id 105447
Nyckelord [en]
30-day Hospital Readmission, AI applications in health care, Experience-based Co-design, Multiple Chronic Conditions, Predictive Analytics, Predictive Decision Support Model
Nationell ämneskategori
Hälso- och sjukvårdsorganisation, hälsopolitik och hälsoekonomi
Identifikatorer
URN: urn:nbn:se:hh:diva-53253DOI: 10.1016/j.ijmedinf.2024.105447ISI: 001227505800001PubMedID: 38598905Scopus ID: 2-s2.0-85189858231OAI: oai:DiVA.org:hh-53253DiVA, id: diva2:1853694
Forskningsfinansiär
VinnovaFamiljen Kamprads stiftelse
Anmärkning

Funding: This work was financially supported by Innovationsfonden, with additional funding from VINNOVA and the Kamprad Family Foundation.

Tillgänglig från: 2024-04-23 Skapad: 2024-04-23 Senast uppdaterad: 2024-06-27Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Savage, Carl

Sök vidare i DiVA

Av författaren/redaktören
Savage, Carl
Av organisationen
Akademin för hälsa och välfärd
I samma tidskrift
International Journal of Medical Informatics
Hälso- och sjukvårdsorganisation, hälsopolitik och hälsoekonomi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 28 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf