hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Recent deep learning models for diagnosis and health monitoring: a review of researches and future challenges
School of Automation, Wuhan University of Technology, Wuhan, China.
Högskolan i Halmstad, Akademin för informationsteknologi, Centrum för forskning om tillämpade intelligenta system (CAISR).
School of Automation, Wuhan University of Technology, Wuhan, China.
2023 (Engelska)Ingår i: Transactions of the Institute of Measurement and Control, ISSN 0142-3312, E-ISSN 1477-0369Artikel i tidskrift (Refereegranskat) Epub ahead of print
Abstract [en]

As an important branch of machine learning, deep learning (DL) models with multiple hidden layer structures have the ability to extract highly representative features from the input. At present, fault detection and diagnosis (FDD) and health monitoring solutions developed based on DL models have received extensive attention in academia and industry along with the rapid improvement of computing power. Therefore, this paper focuses on a comprehensive review of DL model–based FDD and health monitoring schemes in view of common problems of industrial systems. First, brief theoretical backgrounds of basic DL models are introduced. Then, related publications are discussed about the development of DL and graphical models in the industrial context. Afterwards, public data sets are summarized, which are associated with several research papers. More importantly, suggestions on DL model–based diagnosis and health monitoring solutions and future developments are given. Our work will have a positive impact on the selection and design of FDD solutions based on DL and graphical models in the future. © The Author(s) 2023.

Ort, förlag, år, upplaga, sidor
London: Sage Publications, 2023.
Nyckelord [en]
Deep learning, graphical probabilistic models, health monitoring, fault diagnosis, big data
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:hh:diva-49884DOI: 10.1177/01423312231157118ISI: 000950021400001Scopus ID: 2-s2.0-85150937696OAI: oai:DiVA.org:hh-49884DiVA, id: diva2:1731829
Tillgänglig från: 2023-01-29 Skapad: 2023-01-29 Senast uppdaterad: 2023-04-21Bibliografiskt granskad

Open Access i DiVA

fulltext(1528 kB)166 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1528 kBChecksumma SHA-512
776d5aacdd0949aa9db47104b63e2ad5ff03b6a3153d7c48dcb110f638ca71edb09ac5a7288f93013072940811843587b7d185f7d9b7988465fb382bd7c0d14a
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Atoui, M. Amine

Sök vidare i DiVA

Av författaren/redaktören
Atoui, M. Amine
Av organisationen
Centrum för forskning om tillämpade intelligenta system (CAISR)
I samma tidskrift
Transactions of the Institute of Measurement and Control
Elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 166 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1129 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf