hh.sePublikationer
Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Eigenspace Method for Detecting Space-Time Disease Clusters with Unknown Population-Data
Department of Fundamental & Applied Sciences, Universiti Teknologi Petronas, Perak, Malaysia.
Department of Fundamental & Applied Sciences, Universiti Teknologi Petronas, Perak, Malaysia.
Department of Fundamental & Applied Sciences, Universiti Teknologi Petronas, Perak, Malaysia.
Department of Fundamental & Applied Sciences, Universiti Teknologi Petronas, Perak, Malaysia.
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: Computers, Materials and Continua, ISSN 1546-2218, E-ISSN 1546-2226, Vol. 70, nr 1, s. 1945-1953Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Space-time disease cluster detection assists in conducting disease surveillance and implementing control strategies. The state-of-the-art method for this kind of problem is the Space-time Scan Statistics (SaTScan) which has limitations for non-traditional/non-clinical data sources due to its parametric model assumptions such as Poisson or Gaussian counts. Addressing this problem, an Eigenspace-based method called Multi-EigenSpot has recently been proposed as a nonparametric solution. However, it is based on the population counts data which are not always available in the least developed countries. In addition, the population counts are difficult to approximate for some surveillance data such as emergency department visits and over-the-counter drug sales, where the catchment area for each hospital/pharmacy is undefined. We extend the population-based Multi-EigenSpot method to approximate the potential disease clusters from the observed/reported disease counts only with no need for the population counts. The proposed adaptation uses an estimator of expected disease count that does not depend on the population counts. The proposed method was evaluated on the real-world dataset and the results were compared with the population-based methods: Multi-EigenSpot and SaTScan. The result shows that the proposed adaptation is effective in approximating the important outputs of the population-based methods. © 2021 Tech Science Press. All rights reserved.

Ort, förlag, år, upplaga, sidor
Henderson: Tech Science Press , 2022. Vol. 70, nr 1, s. 1945-1953
Nyckelord [en]
Space-time disease clusters, Eigenspace method, nontraditional data sources, nonparametric methods
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:hh:diva-45582DOI: 10.32604/cmc.2022.019029ISI: 000709118000028Scopus ID: 2-s2.0-85114558730OAI: oai:DiVA.org:hh-45582DiVA, id: diva2:1593890
Anmärkning

Funding: This article was funded by a Fundamental Research Grant Scheme (FRGS) from the Ministry of Education, Malaysia (Ref: FRGS/1/2018/STG06/UTP/02/1) and a Yayasan Universiti Teknologi PETRONAS-Fundamental Research Grant (cost center of 015LC0-013) received by Hanita Daud.

Tillgänglig från: 2021-09-14 Skapad: 2021-09-14 Senast uppdaterad: 2023-05-02Bibliografiskt granskad

Open Access i DiVA

fulltext(689 kB)187 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 689 kBChecksumma SHA-512
e0fb15838c2fccef4b94d8608d946c215ad221414cc27e5b29c63242c298e076d64873251fb22b54e6eda5575be2a22a0eac101b196d2c9bc6d937a3f7f5caf9
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Fanaee Tork, Hadi

Sök vidare i DiVA

Av författaren/redaktören
Fanaee Tork, Hadi
Av organisationen
CAISR Centrum för tillämpade intelligenta system (IS-lab)
I samma tidskrift
Computers, Materials and Continua
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 187 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 700 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf