hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Real Time Gym Activity Detection using Monocular RGB Camera
Högskolan i Halmstad, Akademin för informationsteknologi.
2020 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Action detection is an attractive area for researchers in computer vision, healthcare, physiotherapy, psychology, and others. Intensive work has been done in this area due to its wide range of applications such as security surveillance, video tagging, Human-Computer Interaction (HCI), robotics, medical diagnosis, sports analysis, interactive gaming, and many others. After the deep learning booming results in computer vision tasks like image classification, many researchers have tried to extend the success of deep learning models to video classification and activity recognition. The research question of this thesis is to study the use of the 2D human poses extracted by a DNN-based model from RGB frames only, for the online activity detection task and comparing it with the state of the art solutions that utilize the human 3D skeletal data extracted by a depth sensor as an input. At the same time, this work showed the importance of input pre-processing and filtering on improving the performance of the online human activity detector. Detecting gym exercises and counting the repetitions in real-time using the human skeletal data versus the 2D poses have been studied in-depth in this work. The contributions of this work are as follows: 1) generating RGB-D dataset for a set of gym exercises, 2) proposing a novel real-time skeleton-based Double Representational RNN (DR-RNN) network architecture for the online action detection, 3) Demonstrating the ability of the proposed model to achieve satisfiable results using pose estimation models applied on RGB frames, 4) introducing a novel learnable exponential filter for the online low latency filtering applications.

Ort, förlag, år, upplaga, sidor
2020. , s. 38
Nyckelord [en]
ActivityDetection, RNN, GymActionDetection, PoseBasedActionDetection, DeepLearning, SkeletonBasedOnlineActionDetection
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:hh:diva-41440OAI: oai:DiVA.org:hh-41440DiVA, id: diva2:1390044
Ämne / kurs
Datateknik
Utbildningsprogram
Masterprogram i inbyggda och intelligenta system
Presentation
2019-05-24, Halmstad, 00:47 (Engelska)
Handledare
Examinatorer
Tillgänglig från: 2020-01-31 Skapad: 2020-01-31 Senast uppdaterad: 2020-01-31Bibliografiskt granskad

Open Access i DiVA

fulltext(8129 kB)103 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 8129 kBChecksumma SHA-512
d56252fcc15e1e0c1ed871e507ad1fd7e4695851a0996d1a3a218f6d13c2923cb4cf597e9c8b23ed8bb7661ab22dc6808a2d86db4109c39fad77af6f99f1d35f
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Alshatta, Mohammad Samer
Av organisationen
Akademin för informationsteknologi
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 103 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 118 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf