hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Influence of morphology on electrical and optical properties of graphene/Al-doped ZnO-nanorod composites
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Linköping University, Norrköping, Sweden.ORCID-id: 0000-0002-6850-1552
Linköping University, Linköping, Sweden.
Linköping University, Linköping, Sweden.
Linköping University, Linköping, Sweden.
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 29, nr 41, artikel-id 415201Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The development of future 3D-printed electronics relies on the access to highly conductive inexpensive materials that are printable at low temperatures (<100 C). The implementation of available materials for these applications are, however, still limited by issues related to cost and printing quality. Here, we report on the simple hydrothermal growth of novel nanocomposites that are well suited for conductive printing applications. The nanocomposites comprise highly Al-doped ZnO nanorods grown on graphene nanoplatelets (GNPs). The ZnO nanorods play the two major roles of (i) preventing GNPs from agglomerating and (ii) promoting electrical conduction paths between the graphene platelets. The effect of two different ZnO-nanorod morphologies with varying Al-doping concentration on the nanocomposite conductivity and the graphenedispersity are investigated. Time-dependent absorption, photoluminescence and photoconductivity measurements show that growth in high pH solutions promotes a better graphene dispersity, higher doping levels and enhanced bonding between the graphene and the ZnO nanorods. Growth in low pH solutions yields samples characterized by a higher conductivity and a reduced number of surface defects. These samples also exhibit a large persistent photoconductivity attributed to an effective charge separation and transfer from the nanorods to the graphene platelets. Our findings can be used to tailor the conductivity of novel printable composites, or for fabrication of large volumes of inexpensive porous conjugated graphene-semiconductor composites. © 2018 IOP Publishing Ltd.

Ort, förlag, år, upplaga, sidor
Bristol: Institute of Physics Publishing (IOPP), 2018. Vol. 29, nr 41, artikel-id 415201
Nyckelord [en]
grapheme, nanocomposites, nanorods, persistent photoconductivity, printing, zinc oxide
Nationell ämneskategori
Nanoteknik
Identifikatorer
URN: urn:nbn:se:hh:diva-38250DOI: 10.1088/1361-6528/aad3ecISI: 000440632800001PubMedID: 30015332Scopus ID: 2-s2.0-85051665865OAI: oai:DiVA.org:hh-38250DiVA, id: diva2:1260373
Tillgänglig från: 2018-11-02 Skapad: 2018-11-02 Senast uppdaterad: 2019-09-30Bibliografiskt granskad
Ingår i avhandling
1. Graphene-based nanocomposites for electronics and photocatalysis
Öppna denna publikation i ny flik eller fönster >>Graphene-based nanocomposites for electronics and photocatalysis
2019 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The development of future electronics depends on the availability of suitable functional materials. Printed electronics, for example, relies on access to highly conductive, inexpensive and printable materials, while strong light absorption and low carrier recombination rates are demanded in photocatalysis industry. Despite all efforts to develop new materials, it still remains a challenge to have all the desirable aspects in a single material. One possible route towards novel functional materials, with improved and unprecedented physical properties, is to form composites of different selected materials.

In this work, we report on hydrothermal growth and characterization of graphene/zinc oxide (GR/ZnO) nanocomposites, suited for electronics and photocatalysis application. For conductive purposes, highly Al-doped ZnO nanorods grown on graphene nanoplates (GNPs) prevent the GNPs from agglomerating and promote conductive paths between the GNPs. The effect of the ZnO nanorod morphology and GR dispersity on the nanocomposite conductivity and GR/ZnO nanorod bonding strength were investigated by conductivity measurements and optical spectroscopy. The inspected samples show that growth in high pH solutions promotes a better graphene dispersity, higher doping and enhanced bonding between the GNPs and the ZnO nanorods. Growth in low pH solutions yield samples characterized by a higher conductivity and a reduced number of surface defects.

In addition, different GR/ZnO nanocomposites, decorated with plasmonic silver iodide (AgI) nanoparticles, were synthesized and analyzed for solar-driven photocatalysis. The addition of Ag/AgI generates a strong surface plasmon resonance effect involving metallic Ag0, which redshifts the optical absorption maximum into the visible light region enhancing the photocatalytic performance under solar irradiation. A wide range of characterization techniques including, electron microscopy, photoelectron spectroscopy and x-ray diffraction confirm a successful formation of photocatalysts.

Our findings show that the novel proposed GR-based nanocomposites can lead to further development of efficient photocatalyst materials with applications in removal of organic pollutants, or for fabrication of large volumes of inexpensive porous conjugated GR-semiconductor composites.

Ort, förlag, år, upplaga, sidor
Norrköping: Linköping University Electronic Press, 2019. s. 52
Serie
Linköping Studies in Science and Technology. Licentiate Thesis, ISSN 0280-7971 ; 1847
Nyckelord
Graphene, Zinc oxide, Silver iodine, Plasmonics, Nanocomposites, Conjugated electronics, Photocatalysis, Photodegradation
Nationell ämneskategori
Annan fysik
Identifikatorer
urn:nbn:se:hh:diva-40638 (URN)9789176850404 (ISBN)
Presentation
2019-06-13, K3, Kåkenhus, Norrköping, 14:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-09-27 Skapad: 2019-09-27 Senast uppdaterad: 2019-09-30Bibliografiskt granskad

Open Access i DiVA

fulltext(1763 kB)149 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1763 kBChecksumma SHA-512
c78f584beb82131b3701ab3f8bac45e8c76796dd378aa690311a2417e1372b7309225aa184128f733fb92f47301008aee1d11b1908154e72d4e801796c3be186
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Chalangar, EbrahimPettersson, Håkan

Sök vidare i DiVA

Av författaren/redaktören
Chalangar, EbrahimPettersson, Håkan
Av organisationen
Tillämpad matematik och fysik (MPE-lab)
I samma tidskrift
Nanotechnology
Nanoteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 149 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 180 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf