hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improving Automated Latent Fingerprint Identification Using Extended Minutia Types
School of Electronic Engineering, Dublin City University, Ireland.
School of Engineering, Universidad Autonoma de Madrid, Spain.
School of Engineering, Universidad Autonoma de Madrid, Spain.
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-1400-346X
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Information Fusion, ISSN 1566-2535, E-ISSN 1872-6305, Vol. 50, s. 9-19Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Latent fingerprints are usually processed with Automated Fingerprint Identification Systems (AFIS) by law enforcement agencies to narrow down possible suspects from a criminal database. AFIS do not commonly use all discriminatory features available in fingerprints but typically use only some types of features automatically extracted by a feature extraction algorithm. In this work, we explore ways to improve rank identification accuracies of AFIS when only a partial latent fingerprint is available. Towards solving this challenge, we propose a method that exploits extended fingerprint features (unusual/rare minutiae) not commonly considered in AFIS. This new method can be combined with any existing minutiae-based matcher. We first compute a similarity score based on least squares between latent and tenprint minutiae points, with rare minutiae features as reference points. Then the similarity score of the reference minutiae-based matcher at hand is modified based on a fitting error from the least square similarity stage. We use a realistic forensic fingerprint casework database in our experiments which contains rare minutiae features obtained from Guardia Civil, the Spanish law enforcement agency. Experiments are conducted using three minutiae-based matchers as a reference, namely: NIST-Bozorth3, VeriFinger-SDK and MCC-SDK. We report significant improvements in the rank identification accuracies when these minutiae matchers are augmented with our proposed algorithm based on rare minutiae features. © 2018 Elsevier B.V.

Ort, förlag, år, upplaga, sidor
Amsterdam: Elsevier, 2019. Vol. 50, s. 9-19
Nyckelord [en]
Latent Fingerprints, Forensics, Extended Feature Sets, Rare minutiae features
Nationell ämneskategori
Signalbehandling
Identifikatorer
URN: urn:nbn:se:hh:diva-38113DOI: 10.1016/j.inffus.2018.10.001Scopus ID: 2-s2.0-85054739072OAI: oai:DiVA.org:hh-38113DiVA, id: diva2:1254167
Projekt
BBfor2
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet, FP7-ITN-238803KK-stiftelsen, SIDUS-AIRKK-stiftelsen, CAISR
Anmärkning

R.K. was supported for the most part of this work by a Marie Curie Fellowship under project BBfor2 from European Commission (FP7-ITN-238803). This work has also been partially supported by Spanish Guardia Civil, and project CogniMetrics (TEC2015-70627-R) from Spanish MINECO/FEDER. The researchers from Halmstad University acknowledge funding from KK-SIDUS-AIR 485 project and the CAISR program in Sweden.

Tillgänglig från: 2018-10-08 Skapad: 2018-10-08 Senast uppdaterad: 2019-04-10Bibliografiskt granskad

Open Access i DiVA

fulltext(4737 kB)74 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 4737 kBChecksumma SHA-512
0dcc8411edd8016ded59ec1f570ab98eeabee084a8bb6374dd70860c52eb57cb3db56d79a23fcc5a74a267a158e5c2ddb000f8762048b97e90a77d374f2e3696
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Alonso-Fernandez, FernandoBigun, Josef

Sök vidare i DiVA

Av författaren/redaktören
Alonso-Fernandez, FernandoBigun, Josef
Av organisationen
CAISR Centrum för tillämpade intelligenta system (IS-lab)
I samma tidskrift
Information Fusion
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 74 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 89 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf