hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Log-Likelihood Score Level Fusion for Improved Cross-Sensor Smartphone Periocular Recognition
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-1400-346X
Norwegian University of Science and Technology, Gjøvik, Norway.
Norwegian University of Science and Technology, Gjøvik, Norway.
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-4929-1262
2017 (Engelska)Ingår i: 2017 25th European Signal Processing Conference (EUSIPCO), Piscataway: IEEE, 2017, s. 281-285, artikel-id 8081211Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The proliferation of cameras and personal devices results in a wide variability of imaging conditions, producing large intra-class variations and a significant performance drop when images from heterogeneous environments are compared. However, many applications require to deal with data from different sources regularly, thus needing to overcome these interoperability problems. Here, we employ fusion of several comparators to improve periocular performance when images from different smartphones are compared. We use a probabilistic fusion framework based on linear logistic regression, in which fused scores tend to be log-likelihood ratios, obtaining a reduction in cross-sensor EER of up to 40% due to the fusion. Our framework also provides an elegant and simple solution to handle signals from different devices, since same-sensor and crosssensor score distributions are aligned and mapped to a common probabilistic domain. This allows the use of Bayes thresholds for optimal decision making, eliminating the need of sensor-specific thresholds, which is essential in operational conditions because the threshold setting critically determines the accuracy of the authentication process in many applications. © EURASIP 2017

Ort, förlag, år, upplaga, sidor
Piscataway: IEEE, 2017. s. 281-285, artikel-id 8081211
Serie
European Signal Processing Conference (EUSIPCO), ISSN 2076-1465
Nationell ämneskategori
Signalbehandling
Identifikatorer
URN: urn:nbn:se:hh:diva-34740DOI: 10.23919/EUSIPCO.2017.8081211Scopus ID: 2-s2.0-85041546333ISBN: 978-0-9928626-7-1 (tryckt)OAI: oai:DiVA.org:hh-34740DiVA, id: diva2:1133812
Konferens
2017 25th European Signal Processing Conference (EUSIPCO 2017), 28 Aug.-2 Sept., 2017, Kos Island, Greece
Projekt
SIDUS-AIR
Forskningsfinansiär
Vetenskapsrådet, 2012-4313KK-stiftelsen, SIDUS-AIRKK-stiftelsen, CAISRTillgänglig från: 2017-08-16 Skapad: 2017-08-16 Senast uppdaterad: 2018-03-06Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopusFull Text

Personposter BETA

Alonso-Fernandez, FernandoBigun, Josef

Sök vidare i DiVA

Av författaren/redaktören
Alonso-Fernandez, FernandoBigun, Josef
Av organisationen
CAISR Centrum för tillämpade intelligenta system (IS-lab)
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 213 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf