hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A novel technique to extract accurate cell contours applied to analysis of phytoplankton images
Department of Electrical Power Systems, Kaunas University of Technology, Kaunas, Lithuania.
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Laboratoriet för intelligenta system. Department of Electrical Power Systems, Kaunas University of Technology, Kaunas, Lithuania.ORCID-id: 0000-0003-2185-8973
Department of Electrical Power Systems & Department of Information Systems, Kaunas University of Technology, Kaunas, Lithuania.
Department of Electrical Power Systems, Kaunas University of Technology, Kaunas, Lithuania.
2015 (Engelska)Ingår i: Machine Vision and Applications, ISSN 0932-8092, E-ISSN 1432-1769, Vol. 26, nr 2-3, s. 305-315Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Active contour model (ACM) is an image segmentation technique widely applied for object detection. Most of the research in ACM area is dedicated to the development of various energy functions based on physical intuition. Here, instead of constructing a new energy function, we manipulate values of ACM parameters to generate a multitude of potential contours, score them using a machine-learned ranking technique, and select the best contour for each object in question. Several learning-to-rank (L2R) methods are evaluated with a goal to choose the most accurate in assessing the quality of generated contours. Superiority of the proposed segmentation approach over the original boosted edge-based ACM and three ACM implementations using the level-set framework is demonstrated for the task of Prorocentrum minimum cells’ detection in phytoplankton images. Experiments show that diverse set of contour features with grading learned by a variant of multiple additive regression trees (λ-MART) helped to extract precise contour for 87.6 % of cells tested.

Ort, förlag, år, upplaga, sidor
Heidelberg: Springer Berlin/Heidelberg, 2015. Vol. 26, nr 2-3, s. 305-315
Nyckelord [en]
Active contour model (ACM), Object detection, Machine-learned ranking, Phytoplankton
Nationell ämneskategori
Datorseende och robotik (autonoma system)
Identifikatorer
URN: urn:nbn:se:hh:diva-27450DOI: 10.1007/s00138-014-0643-0ISI: 000351462900011PubMedID: 26573936Scopus ID: 2-s2.0-84960360101OAI: oai:DiVA.org:hh-27450DiVA, id: diva2:778099
Anmärkning

Microscopy images of Prorocentrum minimum cells were obtained by dr. Ricardas Paskauskas and dr. Sigitas Sulcius at Coastal Research and Planning Institute, Klaipeda University. Funding for this work was provided by a Grant (No. LEK-09/2012) from the Research Council of Lithuania under National Research Programme “Ecosystems in Lithuania: climate change and human impact”. 

Tillgänglig från: 2015-01-09 Skapad: 2015-01-09 Senast uppdaterad: 2018-01-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Verikas, Antanas

Sök vidare i DiVA

Av författaren/redaktören
Verikas, Antanas
Av organisationen
Laboratoriet för intelligenta system
I samma tidskrift
Machine Vision and Applications
Datorseende och robotik (autonoma system)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 706 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf