hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Selecting salient features for classification based on neural network committees
Department of Applied Electronics, Kaunas University of Technology LT-3031, Kaunas, Lithuania.
Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).ORCID-id: 0000-0003-2185-8973
2004 (Engelska)Ingår i: Pattern Recognition Letters, ISSN 0167-8655, E-ISSN 1872-7344, Vol. 25, nr 16, s. 1879-1891Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Aggregating outputs of multiple classifiers into a committee decision is one of the most important techniques for improving classification accuracy. The issue of selecting an optimal subset of relevant features plays also an important role in successful design of a pattern recognition system. In this paper, we present a neural network based approach for identifying salient features for classification in neural network committees. Feature selection is based on two criteria, namely the reaction of the cross-validation data set classification error due to the removal of the individual features and the diversity of neural networks comprising the committee. The algorithm developed removed a large number of features from the original data sets without reducing the classification accuracy of the committees. The accuracy of the committees utilizing the reduced feature sets was higher than those exploiting all the original features.

Ort, förlag, år, upplaga, sidor
Amsterdam: Elsevier Science , 2004. Vol. 25, nr 16, s. 1879-1891
Nyckelord [en]
Classification, Decision fusion, Feature selection, Neural network committee
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:hh:diva-241DOI: 10.1016/j.patrec.2004.08.018ISI: 000225199400010Scopus ID: 2-s2.0-8344257309Lokalt ID: 2082/536OAI: oai:DiVA.org:hh-241DiVA, id: diva2:237419
Tillgänglig från: 2006-11-24 Skapad: 2006-11-24 Senast uppdaterad: 2017-12-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Verikas, Antanas

Sök vidare i DiVA

Av författaren/redaktören
Verikas, Antanas
Av organisationen
Halmstad Embedded and Intelligent Systems Research (EIS)
I samma tidskrift
Pattern Recognition Letters
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 263 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf