hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Training machine learning models to predict 30-day mortality in patients discharged from the emergency department: a retrospective, population based registry study
Department of Clinical Sciences, Lund University, Lund, Sweden.
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab). Halland Hospital, Region Halland, Halmstad, Sweden.ORCID-id: 0000-0001-5688-0156
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-3495-2961
Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA & Harvard Medical School, Boston, Massachusetts, USA.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: BMJ Open, ISSN 2044-6055, E-ISSN 2044-6055, Vol. 9, nr 8, artikel-id e028015Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background: Aggressive treatment at end-of-life (EOL) can be traumatic to patients and may not add clinical benefit. Absent an accurate prognosis of death, individual level biases may prevent timely discussions about the scope of EOL care and patients are at risk of being subject to care against their desire. The aim of this work is to develop predictive algorithms for identifying patients at EOL, with clinically meaningful discriminatory power.

Methods: Retrospective, population-based study of patients utilizing emergency departments (EDs) in Sweden, Europe. Electronic health records (EHRs) were used to train supervised learning algorithms to predict all-cause mortality within 30 days following ED discharge. Algorithm performance was validated out of sample on EHRs from a separate hospital, to which the algorithms were previously unexposed.

Results: Of 65,776 visits in the development set, 136 (0.21%) experienced the outcome. The algorithm with highest discrimination attained ROC-AUC 0.945 (95% CI 0.933 - 0.956), with sensitivity 0.869 (95% CI 0.802, 0.931) and specificity 0.858 (0.855, 0.860) on the validation set.

Conclusions: Multiple algorithms displayed excellent discrimination and outperformed available indexes for short-term mortality prediction. The practical utility of the algorithms increases as the required data were captured electronically and did not require de novo data collection.

Trial registration number: Not applicable.

Ort, förlag, år, upplaga, sidor
London: BMJ Publishing Group Ltd, 2019. Vol. 9, nr 8, artikel-id e028015
Nationell ämneskategori
Samhällsfarmaci och klinisk farmaci
Identifikatorer
URN: urn:nbn:se:hh:diva-39307DOI: 10.1136/bmjopen-2018-028015PubMedID: 31401594OAI: oai:DiVA.org:hh-39307DiVA, id: diva2:1313022
Anmärkning

Funding: This work was partly funded by Region Halland, Sweden.The initial stage of MCBs involvement in the work was funded by a grant for post-doctoral research from the Tegger Foundation.

Tillgänglig från: 2019-05-02 Skapad: 2019-05-02 Senast uppdaterad: 2019-08-15Bibliografiskt granskad
Ingår i avhandling
1. Predicting clinical outcomes via machine learning on electronic health records
Öppna denna publikation i ny flik eller fönster >>Predicting clinical outcomes via machine learning on electronic health records
2019 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The rising complexity in healthcare, exacerbated by an ageing population, results in ineffective decision-making leading to detrimental effects on care quality and escalates care costs. Consequently, there is a need for smart decision support systems that can empower clinician's to make better informed care decisions. Decisions, which are not only based on general clinical knowledge and personal experience, but also rest on personalised and precise insights about future patient outcomes. A promising approach is to leverage the ongoing digitization of healthcare that generates unprecedented amounts of clinical data stored in Electronic Health Records (EHRs) and couple it with modern Machine Learning (ML) toolset for clinical decision support, and simultaneously, expand the evidence base of medicine. As promising as it sounds, assimilating complete clinical data that provides a rich perspective of the patient's health state comes with a multitude of data-science challenges that impede efficient learning of ML models. This thesis primarily focuses on learning comprehensive patient representations from EHRs. The key challenges of heterogeneity and temporality in EHR data are addressed using human-derived features appended to contextual embeddings of clinical concepts and Long-Short-Term-Memory networks, respectively. The developed models are empirically evaluated in the context of predicting adverse clinical outcomes such as mortality or hospital readmissions. We also present evidence that, surprisingly, different ML models primarily designed for non-EHR analysis (like language processing and time-series prediction) can be combined and adapted into a single framework to efficiently represent EHR data and predict patient outcomes.

Ort, förlag, år, upplaga, sidor
Halmstad: Halmstad University Press, 2019
Serie
Halmstad University Dissertations ; 58
Nationell ämneskategori
Hälso- och sjukvårdsorganisation, hälsopolitik och hälsoekonomi
Identifikatorer
urn:nbn:se:hh:diva-39309 (URN)978-91-88749-24-6 (ISBN)978-91-88749-25-3 (ISBN)
Presentation
2019-05-23, R4318, R Building, Halmstad University, Halmstad, Sweden, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-05-06 Skapad: 2019-05-02 Senast uppdaterad: 2019-05-06Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Ashfaq, AwaisPinheiro Sant'Anna, Anita

Sök vidare i DiVA

Av författaren/redaktören
Ashfaq, AwaisPinheiro Sant'Anna, Anita
Av organisationen
CAISR Centrum för tillämpade intelligenta system (IS-lab)
I samma tidskrift
BMJ Open
Samhällsfarmaci och klinisk farmaci

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 299 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf