hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Log-Likelihood Score Level Fusion for Improved Cross-Sensor Smartphone Periocular Recognition
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-1400-346X
Norwegian University of Science and Technology, Gjøvik, Norway.
Norwegian University of Science and Technology, Gjøvik, Norway.
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-4929-1262
2017 (engelsk)Inngår i: 2017 25th European Signal Processing Conference (EUSIPCO), Piscataway: IEEE, 2017, s. 281-285, artikkel-id 8081211Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The proliferation of cameras and personal devices results in a wide variability of imaging conditions, producing large intra-class variations and a significant performance drop when images from heterogeneous environments are compared. However, many applications require to deal with data from different sources regularly, thus needing to overcome these interoperability problems. Here, we employ fusion of several comparators to improve periocular performance when images from different smartphones are compared. We use a probabilistic fusion framework based on linear logistic regression, in which fused scores tend to be log-likelihood ratios, obtaining a reduction in cross-sensor EER of up to 40% due to the fusion. Our framework also provides an elegant and simple solution to handle signals from different devices, since same-sensor and crosssensor score distributions are aligned and mapped to a common probabilistic domain. This allows the use of Bayes thresholds for optimal decision making, eliminating the need of sensor-specific thresholds, which is essential in operational conditions because the threshold setting critically determines the accuracy of the authentication process in many applications. © EURASIP 2017

sted, utgiver, år, opplag, sider
Piscataway: IEEE, 2017. s. 281-285, artikkel-id 8081211
Serie
European Signal Processing Conference (EUSIPCO), ISSN 2076-1465
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-34740DOI: 10.23919/EUSIPCO.2017.8081211Scopus ID: 2-s2.0-85041546333ISBN: 978-0-9928626-7-1 (tryckt)OAI: oai:DiVA.org:hh-34740DiVA, id: diva2:1133812
Konferanse
2017 25th European Signal Processing Conference (EUSIPCO 2017), 28 Aug.-2 Sept., 2017, Kos Island, Greece
Prosjekter
SIDUS-AIR
Forskningsfinansiär
Swedish Research Council, 2012-4313Knowledge Foundation, SIDUS-AIRKnowledge Foundation, CAISRTilgjengelig fra: 2017-08-16 Laget: 2017-08-16 Sist oppdatert: 2018-03-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopusFull Text

Personposter BETA

Alonso-Fernandez, FernandoBigun, Josef

Søk i DiVA

Av forfatter/redaktør
Alonso-Fernandez, FernandoBigun, Josef
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 234 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf