hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Behavior Trees Evolution by Means of Genetic Programming
Högskolan i Halmstad, Akademin för informationsteknologi.
2015 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Behavior Trees are a method for AI programming that consists of a tree of hierarchical nodes controlling the flow of agent's decision making. They have proven, while being a pretty straightforward means to implement an AI, to be incredibly powerful way of obtaining autonomous agents, both due to a fact that the development can be iterable (one can start with implementing simple behavior and gradually improve the tree by adding and modifying nodes and branches) and allowing for, so to say, ``fallback tactics'', should the currently executed action fail. Born in the game industry, they have since gained fair amount of popularity in other domains, including robotics.Evolutionary algorithms, largely popularized by John Holland, have been adapted for use in a vast variety of different problems, including optimization issues and decision handling, often through introducing serious changes to both the algorithm structure and data structures used. Arguably, one of the most valuable modifications was Genetic Programming, popularized through works of John Koza.

This thesis documents the work on combining Behavior Trees and Genetic Programming in order to study and observe cooperative and adversative behaviors between agents controlled by genetically generated Behavior Trees. Evolving two kinds of agents in two contrasting scenarios, this thesis focuses on feasibility of selfishness versus utilitarian behaviors and their evolution. After defining what constitutes a success for each case, we attempt to compare the results from respective scenarios to see which behavior type is profitable to exhibit.

sted, utgiver, år, opplag, sider
2015. , s. 52
Emneord [en]
Genetic Programming, Behavior Trees, Cooperation
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-29680OAI: oai:DiVA.org:hh-29680DiVA, id: diva2:865126
Fag / kurs
Computer science and engineering
Veileder
Examiner
Tilgjengelig fra: 2015-11-11 Laget: 2015-10-26 Sist oppdatert: 2018-01-10bibliografisk kontrollert

Open Access i DiVA

fulltext(4280 kB)92 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 4280 kBChecksum SHA-512
ab4066c1d8920fce4c07e0b3679bf90dc7e74966cef0114212c2d85b95269b82ac53e5ec2ba5aeb2bf28b8e5600df72dc3bccd5ca60c9b55ee71a0c66df2fb24
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Mazur, Milosz
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 92 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 333 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf