hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Neuro-fuzzy Models for Geomagnetic Storms Prediction: Using the Auroral Electrojet Index
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Centrum för forskning om inbyggda system (CERES). School of Computer Science, Faculty of Engineering & Physical Science, The University of Manchester, Manchester, United Kingdom.
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Centrum för forskning om inbyggda system (CERES).
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Centrum för forskning om inbyggda system (CERES).ORCID-id: 0000-0001-6625-6533
2014 (engelsk)Inngår i: 2014 10th International Conference on Natural Computation (ICNC), Piscataway, NJ: IEEE Press, 2014, s. 12-17, artikkel-id 6975802Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This study presents comparative results obtained from employing four different neuro-fuzzy models to predict geomagnetic storms. Two of these neuro-fuzzy models can be classified as Brain Emotional Learning Inspired Models (BELIMs). These two models are BELFIS (Brain Emotional Learning Based Fuzzy Inference System) and BELRFS (Brain Emotional Learning Recurrent Fuzzy System). The two other models are Adaptive Neuro-Fuzzy Inference System (ANFIS) and Locally Linear Model Tree (LoLiMoT) learning algorithm, two powerful neuro-fuzzy models to accurately predict a nonlinear system. These models are compared for their ability to predict geomagnetic storms using the AE index.

sted, utgiver, år, opplag, sider
Piscataway, NJ: IEEE Press, 2014. s. 12-17, artikkel-id 6975802
Emneord [en]
Adaptive Neuro-fuzzy Inference System, Auroral Electrojet, Brain Emotional Learning-inspired Model, Locally linear model tree learning algorithm
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-26904DOI: 10.1109/ICNC.2014.6975802ISI: 000393406200003Scopus ID: 2-s2.0-84926663387ISBN: 978-1-4799-5151-2 (digital)OAI: oai:DiVA.org:hh-26904DiVA, id: diva2:759979
Konferanse
11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2014), Xiamen, China, 19–21 August, 2014
Tilgjengelig fra: 2014-11-02 Laget: 2014-11-02 Sist oppdatert: 2018-03-22bibliografisk kontrollert

Open Access i DiVA

fulltext(419 kB)242 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 419 kBChecksum SHA-512
8a30eb9feb650f51c533ed4de8f1f3ef1e7fb66a661c0537e035122ae930d633643267dc8710d33e25f45d292996a67d2aead5850a707601b825f928534a6d24
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Parsapoor, MahboobehBilstrup, UrbanSvensson, Bertil

Søk i DiVA

Av forfatter/redaktør
Parsapoor, MahboobehBilstrup, UrbanSvensson, Bertil
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 242 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 218 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf