hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Brain Emotional Learning-based Prediction Model for the Prediction of Geomagnetic Storms
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Centrum för forskning om inbyggda system (CERES). School of Computer Science, Faculty of Engineering & Physical Science, The University of Manchester, Manchester, United Kingdom. (CC-lab)
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Centrum för forskning om inbyggda system (CERES). (CC-lab)
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Centrum för forskning om inbyggda system (CERES).ORCID-id: 0000-0001-6625-6533
2014 (engelsk)Inngår i: Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, Los Alamitos, CA: IEEE Press, 2014, s. 35-42Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper introduces a new type of brain emotional learning inspired models (BELIMs). The suggested model is  utilized as a suitable model for predicting geomagnetic storms. The model is known as BELPM which is an acronym for Brain Emotional Learning-based Prediction Model. The structure of the suggested model consists of four main parts and mimics the corresponding regions of the neural structure underlying fear conditioning. The functions of these parts are implemented by assigning adaptive networks to the different parts. The learning algorithm of BELPM is based on the steepest descent (SD) and the least square estimator (LSE). In this paper, BELPM is employed to predict geomagnetic storms using the Disturbance Storm Time (Dst) index. To evaluate the performance of BELPM, the obtained results have been compared with the results of the adaptive neuro-fuzzy inference system (ANFIS). © 2014 Polish Information Processing Society.

sted, utgiver, år, opplag, sider
Los Alamitos, CA: IEEE Press, 2014. s. 35-42
Serie
Annals of Computer Science and Information Systems, ISSN 2300-5963 ; 2
Emneord [en]
Brain Emotional Learning Inspired Models, Disturbance Storm Time (Dst)
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-26711DOI: 10.15439/2014F231ISI: 000358008500005Scopus ID: 2-s2.0-84912092029ISBN: 978-83-60810-58-3 (tryckt)ISBN: 978-83-60810-57-6 (tryckt)ISBN: 978-83-60810-61-3 (tryckt)OAI: oai:DiVA.org:hh-26711DiVA, id: diva2:754782
Konferanse
9th International Symposium Advances in Artificial Intelligence and Applications (AAIA'14), Warsaw, Poland, 7-10 September, 2014
Tilgjengelig fra: 2014-10-12 Laget: 2014-10-12 Sist oppdatert: 2018-03-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Parsapoor, MahboobehBilstrup, UrbanSvensson, Bertil

Søk i DiVA

Av forfatter/redaktør
Parsapoor, MahboobehBilstrup, UrbanSvensson, Bertil
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 314 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf