hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Detecting Gait Events from Outdoor Accelerometer Data for Long-term and Continuous Monitoring Applications
Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Laboratoriet för intelligenta system.ORCID-id: 0000-0003-4086-9221
Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Laboratoriet för intelligenta system.ORCID-id: 0000-0002-4143-2948
2014 (engelsk)Inngår i: 13th International Symposium on 3D Analysis of Human Movement: 14–17 July, 2014, Lausanne, Switzerland, 2014, , s. 4s. 151-154Konferansepaper, Oral presentation with published abstract (Fagfellevurdert)
Abstract [en]

Detecting gait events is the key to many gait analysis applications which would immensely benefit if the analysis could be carried out using wearable sensors in uncontrolled outdoor environments, enabling continuous monitoring and long-term analysis. This would allow exploring new frontiers in gait analysis by facilitating the availability of more data and empower individuals, especially patients, to avail the benefits of gait analysis in their everyday lives. Previous gait event detection algorithms impose many restrictions as they have been developed from data collected incontrolled, indoor environments. This paper proposes a robust algorithm that utilizes a priori knowledge of gait in conjunction with continuous wavelet transform analysis, to accurately identify heel strike and toe off, from noisy accelerometer signals collected during indoor and outdoor walking. The accuracy of the algorithm is evaluated by using footswitches that are considered as ground truth and the results are compared with another recently published algorithm.

sted, utgiver, år, opplag, sider
2014. , s. 4s. 151-154
Emneord [en]
gait event detection, gait event identification, accelerometer, outdoor walking, wavelet transform, continuous monitoring, long term applications, overground walking
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-26174ISBN: 9782880748562 OAI: oai:DiVA.org:hh-26174DiVA, id: diva2:735193
Konferanse
13th International Symposium on 3D Analysis of Human Movement (3D-AHM 2014), 14–17 July, 2014, Lausanne, Switzerland
Prosjekter
HMC2Tilgjengelig fra: 2014-07-23 Laget: 2014-07-23 Sist oppdatert: 2016-03-09bibliografisk kontrollert

Open Access i DiVA

fulltext(970 kB)247 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 970 kBChecksum SHA-512
03d95c7ada7e881a328e0e6afb02b90eb67a7f59975bcb4dd8ce412d71090763a09d1166e99bdf2e8b261f0f975e418b11c2a96ea026beb2c3464f117f3a918c
Type fulltextMimetype application/pdf

Andre lenker

http://3dahm2014.epfl.ch/files/content/sites/3dahm2014/files/3DAHM-Proceedings%20v2.pdf

Personposter BETA

Khandelwal, SiddharthaWickström, Nicholas

Søk i DiVA

Av forfatter/redaktør
Khandelwal, SiddharthaWickström, Nicholas
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 251 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 509 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf