hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluation of Fisheye-Camera Based Visual Multi-Session Localization in a Real-World Scenario
Volkswagen AG, Group Research, Germany .
Autonomous Systems Lab, ETH Zürich, Switzerland.
Volkswagen AG, Group Research, Germany .
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Intelligenta system (IS-lab).ORCID-id: 0000-0003-3513-8854
2013 (engelsk)Inngår i: Intelligent Vehicles Symposium (IV), 2013 IEEE Workshop on Environment Perception and Navigation for Intelligent Vehicles, Piscataway, NJ: IEEE Operations Center , 2013, s. 57-62Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The European V-Charge project seeks to develop fully automated valet parking and charging of electric vehicles using only low-cost sensors. One of the challenges is to implement robust visual localization using only cameras and stock vehicle sensors. We integrated four monocular, wide-angle, fisheye cameras on a consumer car and implemented a mapping and localization pipeline. Visual features and odometry are combined to build and localize against a keyframe-based three dimensional map. We report results for the first stage of the project, based on two months worth of data acquired under varying conditions, with the objective of localizing against a map created offline. © 2013 IEEE.

sted, utgiver, år, opplag, sider
Piscataway, NJ: IEEE Operations Center , 2013. s. 57-62
Serie
IEEE Intelligent Vehicles Symposium, ISSN 1931-0587
Emneord [en]
Fish-eye cameras, Fully automated, Low-cost sensors, Mapping and localization, Real-world scenario, Three-dimensional maps, Vehicle sensors, Visual localization
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-23382DOI: 10.1109/IVS.2013.6629447ISI: 000333750200010Scopus ID: 2-s2.0-84892396299ISBN: 978-1-4673-2754-1 (tryckt)OAI: oai:DiVA.org:hh-23382DiVA, id: diva2:642048
Konferanse
IEEE Intelligent Vehicles Symposium, June 23-26, 2013, Gold Cost, Australia
Tilgjengelig fra: 2013-08-20 Laget: 2013-08-20 Sist oppdatert: 2018-01-11bibliografisk kontrollert
Inngår i avhandling
1. Lifelong Visual Localization for Automated Vehicles
Åpne denne publikasjonen i ny fane eller vindu >>Lifelong Visual Localization for Automated Vehicles
2015 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Automated driving can help solve the current and future problems of individualtransportation. Automated valet parking is a possible approach to help with overcrowded parking areas in cities and make electric vehicles more appealing. In an automated valet system, drivers are able to drop off their vehicle close to a parking area. The vehicle drives to a free parking spot on its own, while the driver is free to perform other tasks — such as switching the mode of transportation. Such a system requires the automated car to navigate unstructured, possibly three dimensional areas. This goes beyond the scope ofthe tasks performed in the state of the art for automated driving.

This thesis describes a visual localization system that provides accuratemetric pose estimates. As sensors, the described system uses multiple monocular cameras and wheel-tick odometry. This is a sensor set-up that is close to what can be found in current production cars. Metric pose estimates with errors in the order of tens of centimeters enable maneuvers such as parking into tight parking spots. This system forms the basis for automated navigationin the EU-funded V-Charge project.

Furthermore, we present an approach to the challenging problem of life-long mapping and localization. Over long time spans, the visual appearance ofthe world is subject to change due to natural and man-made phenomena. The effective long-term usage of visual maps requires the ability to adapt to these changes. We describe a multi-session mapping system, that fuses datasets intoiiia single, unambiguous, metric representation. This enables automated navigation in the presence of environmental change. To handle the growing complexityof such a system we propose the concept of Summary Maps, which contain a reduced set of landmarks that has been selected through a combination of scoring and sampling criteria. We show that a Summary Map with bounded complexity can achieve accurate localization under a wide variety of conditions.

Finally, as a foundation for lifelong mapping, we propose a relational database system. This system is based on use-cases that are not only concerned with solving the basic mapping problem, but also with providing users with a better understanding of the long-term processes that comprise a map. We demonstrate that we can pose interesting queries to the database, that help us gain a better intuition about the correctness and robustness of the created maps. This is accomplished by answering questions about the appearance and distribution of visual landmarks that were used during mapping. This thesis takes on one of the major unsolved challenges in vision-based localization and mapping: long-term operation in a changing environment. We approach this problem through extensive real world experimentation, as well as in-depth evaluation and analysis of recorded data. We demonstrate that accurate metric localization is feasible both during short term changes, as exemplified by the transition between day and night, as well as longer term changes, such as due to seasonal variation.

sted, utgiver, år, opplag, sider
Halmstad: Halmstad University Press, 2015. s. 74
Serie
Halmstad University Dissertations ; 12
Emneord
vision-based localization, automated vehicles
HSV kategori
Identifikatorer
urn:nbn:se:hh:diva-28239 (URN)978-91-87045-27-1 (ISBN)978-91-87045-26-4 (ISBN)
Disputas
2015-05-13, Wigforssalen, Visionen, Kristian IV:s väg 3, 301 18, Halmstad, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2015-05-12 Laget: 2015-05-11 Sist oppdatert: 2016-01-08bibliografisk kontrollert

Open Access i DiVA

Full text(1372 kB)473 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1372 kBChecksum SHA-512
10d634766c3fed9885708cca318657f648ea116d8d318d6fd7d9104bf9c9e784099b44790b901b9913069d72d537a4e6cd1815472cdd75e3a2e8eb0eff6add68
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Philippsen, Roland

Søk i DiVA

Av forfatter/redaktør
Philippsen, Roland
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 473 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 170 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf