hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mining data with random forests: A survey and results of new tests
Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Intelligenta system (IS-lab).ORCID-id: 0000-0003-2185-8973
Department of Electrical & Control Equipment, Kaunas University of Technology, Kaunas, Lithuania.
Department of Electrical & Control Equipment, Kaunas University of Technology, Kaunas, Lithuania.
2011 (engelsk)Inngår i: Pattern Recognition, ISSN 0031-3203, E-ISSN 1873-5142, Vol. 44, nr 2, s. 330-349Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Random forests (RF) has become a popular technique for classification, prediction, studying variable importance, variable selection, and outlier detection. There are numerous application examples of RF in a variety of fields. Several large scale comparisons including RF have been performed. There are numerous articles, where variable importance evaluations based on the variable importance measures available from RF are used for data exploration and understanding. Apart from the literature survey in RF area, this paper also presents results of new tests regarding variable rankings based on RF variable importance measures. We studied experimentally the consistency and generality of such rankings. Results of the studies indicate that there is no evidence supporting the belief in generality of such rankings. A high variance of variable importance evaluations was observed in the case of small number of trees and small data sets.

sted, utgiver, år, opplag, sider
Oxford: Pergamon Press, 2011. Vol. 44, nr 2, s. 330-349
Emneord [en]
Random forests, Variable importance, Variable selection, Classifier, Data proximity
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-5457DOI: 10.1016/j.patcog.2010.08.011ISI: 000284446200014Scopus ID: 2-s2.0-77958064179OAI: oai:DiVA.org:hh-5457DiVA, id: diva2:345742
Tilgjengelig fra: 2010-08-26 Laget: 2010-08-26 Sist oppdatert: 2018-01-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Verikas, Antanas

Søk i DiVA

Av forfatter/redaktør
Verikas, Antanas
Av organisasjonen
I samme tidsskrift
Pattern Recognition

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 940 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf