hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Neural networks based screening of real estate transactions
Department of Applied Electronics, Kaunas University of Technology, Studentu 50, 51368, Kaunas, Lithuania.
Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).ORCID-id: 0000-0003-2185-8973
2007 (engelsk)Inngår i: Neural Network World, ISSN 1210-0552, Vol. 17, nr 1, s. 17-30Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Aiming to hide the real money gains and to avoid taxes, fictive prices are sometimes recorded in the real estate transactions. This paper is concerned with artificial neural networks based screening of real estate transactions aiming to categorize them into "clear" and "fictitious" classes. The problem is treated as an outlier detection task. Both unsupervised and supervised approaches to outlier detection are studied here. The soft minimal hyper-sphere support vector machine (SVM) based novelty detector is employed to solve the task without the supervision. In the supervised case, the effectiveness of SVM, multilayer perceptron (MLP), and a committee based classification of the real estate transactions are studied. To give the user a deeper insight into the decisions provided by the models, the real estate transactions are not only categorized into "clear" and "fictitious" classes, but also mapped onto the self organizing map (SOM), where the regions of "clear", "doubtful" and "fictitious" transactions are identified. We demonstrate that the stability of the regions evolved in the SOM during training is rather high. The experimental investigations performed on two real data sets have shown that the categorization accuracy obtained from the supervised approaches is considerably higher than that obtained from the unsupervised one. The obtained accuracy is high enough for the technique to be used in practice. © ICS AS CR 2007.

sted, utgiver, år, opplag, sider
Prague: Institute of Information and Computer Technology ASCR; Faculty of Transport, Czech Polytechnic University , 2007. Vol. 17, nr 1, s. 17-30
Emneord [en]
Neural networks, Real estate transactions
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-2037ISI: 000245623100002Scopus ID: 2-s2.0-34147124125Lokal ID: 2082/2432OAI: oai:DiVA.org:hh-2037DiVA, id: diva2:239255
Tilgjengelig fra: 2008-10-13 Laget: 2008-10-13 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Scopus

Person

Verikas, Antanas

Søk i DiVA

Av forfatter/redaktør
Verikas, Antanas
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 307 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf