hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
FGSSNet: Applying Feature-Guided Semantic Segmentation on real world floorplans
Högskolan i Halmstad, Akademin för informationsteknologi.
Högskolan i Halmstad, Akademin för informationsteknologi.
2024 (engelsk)Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
Abstract [en]

This master thesis introduces FGSSNet, a novel multi-headed feature-guided semantic segmentation (FGSS) architecture designed to improve the generalization ability of segmentation models on floorplans by injecting domain-specific information into the latent space, guiding the segmentation process. FGSSNet features a U-Net segmentation backbone with a jointly trained reconstruction head attached to the U-Net decoder, tasked with reconstructing the injected feature maps, forcing their utilization throughout the decoding process. A multi-headed dedicated feature extractor is used to extract the domain-specific feature maps used by the FGSSNet while also predicting the wall width used for our novel dynamic scaling algorithm, designed to ensure spatial consistency between the training and real-world floorplans. The results show that the reconstruction head proved redundant, diverting the networks attention away from the segmentation task, ultimately hindering its performance. Instead, the ablated reconstruction head model, FGSSNet-NoRec, showed increased performance by utilizing the injected features freely, showcasing their importance. FGSSNet-NoRec slightly improves the IoU performance of comparable U-Net models by achieving 79.3 wall IoU(%) on a preprocessed CubiCasa5K dataset while showing an average IoU increase of 3.0 (5.3%) units on the more challenging real-world floorplans, displaying a superior generalization performance by leveraging the injected domain-specific information.

sted, utgiver, år, opplag, sider
2024. , s. 119
Emneord [en]
Segmentation, Semantic-Segmentation, Feature-guided, guide segmentation, CubiCasa5k, Floorplan, injecting domain-specific, FGSSNet, FGSSNet-NoRec, Unet, Unet-backbone
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-53653OAI: oai:DiVA.org:hh-53653DiVA, id: diva2:1867190
Eksternt samarbeid
Axis Communications AB
Fag / kurs
Computer science and engineering
Utdanningsprogram
Computer Science and Engineering, 300 credits
Veileder
Examiner
Tilgjengelig fra: 2024-05-29 Laget: 2024-06-10 Sist oppdatert: 2024-06-10bibliografisk kontrollert

Open Access i DiVA

fulltext(18393 kB)473 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 18393 kBChecksum SHA-512
ca69c71abffb5e580a05ae69b4d1cd16e10d69cccd235502a627cd530049560cea6cd720e07a9810a42d40d0c45320f028db72e697c1c59fbc918c014c01cacd
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 473 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 379 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf