hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Acceleration of Massive MIMO algorithms for Beyond 5G Baseband processing
Högskolan i Halmstad, Akademin för informationsteknologi.
Högskolan i Halmstad, Akademin för informationsteknologi.
2023 (engelsk)Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
Abstract [en]

As the world becomes more globalised, user equipment such as smartphones and Internet of Things devices require increasingly more data, which increases the demand for wireless data traffic. Hence, the acceleration of next-generational networks (5G and beyond) focuses mainly on increasing the bitrate and decreasing the latency. A crucial technology for 5G and beyond is the massive MIMO. In a massive MIMO system, a detector processes the received signals from multiple antennas to decode the transmitted data and extract useful information. This has been implemented in many ways, and one of the most used algorithms is the Zero Forcing (ZF) algorithm. This thesis presents a novel parallel design to accelerate the ZF algorithm using the Cholesky decomposition. This is implemented on a GPU, written in the CUDA programming language, and compared to the existing state-of-the-art implementations regarding latency and throughput. The implementation is also validated from a MATLAB implementation. This research demonstrates promising performance using GPUs for massive MIMO detection algorithms. Our approach achieves a significant speedup factor of 350 in comparison to a serial version of the implementation. The throughput achieved is 160 times greater than a comparable GPU-based approach. Despite this, our approach reaches a 2.4 times lower throughput than a solution that employed application-specific hardware. Given the promising results, we advocate for continued research in this area to further optimise detection algorithms and enhance their performance on GPUs, to potentially achieve even higher throughput and lower latency. 

sted, utgiver, år, opplag, sider
2023. , s. 39
Emneord [en]
embedded systems, massive MIMO, GPU, massive MIMO detection, Zero-Forcing algorithm, Cholesky decomposition, CUDA, 5G and Beyond
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-51184OAI: oai:DiVA.org:hh-51184DiVA, id: diva2:1778903
Fag / kurs
Computer science and engineering
Utdanningsprogram
Computer Science and Engineering, 300 credits
Presentation
2023-05-31, D315, Kristian IV:s väg 3, Halmstad, 13:25 (engelsk)
Veileder
Examiner
Merknad

Our examiner Mahdi wants to wait six months before the thesis is published. 

Tilgjengelig fra: 2023-07-03 Laget: 2023-07-03 Sist oppdatert: 2024-01-03bibliografisk kontrollert

Open Access i DiVA

fulltext(1268 kB)282 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 1268 kBChecksum SHA-512
c4fd87239e9233643110848a699ecf8c01fd4555c258d6c5f2c70b590aa6e03de6b201abb9ae429d15995321489342760d38e6644a33a851ada14fc0a6a8e49b
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Nihl, Ellende Bruijckere, Eek
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 282 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 951 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf