hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Cluster Analysis on Sustainable Transportation: The Case of New York City Open Data
Cape Breton University, Sydney, Canada.
Högskolan i Halmstad, Akademin för informationsteknologi, Centrum för forskning om tillämpade intelligenta system (CAISR). Cape Breton University, Sydney, Canada.ORCID-id: 0000-0002-9557-0043
Högskolan i Halmstad, Akademin för informationsteknologi.ORCID-id: 0000-0002-7796-5201
2022 (engelsk)Inngår i: 2022 International Conference on Applied Artificial Intelligence (ICAPAI), IEEE, 2022Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Artificial Intelligence (AI) provides the opportunity to analyze complex transportation domains from various perspectives. Sustainability is one of the important transportation factors vital for a robust, fair, and efficient living environment and the livability of a city. This article leverages different feature engineering techniques on the New York City mobility dataset to identify the significant sustainability factors and employ the k-means clustering technique to cluster the commuters based on their transportation modes and demographics. Cluster analysis is performed based on the specified features and sustainable mode of transportation. Our cluster analysis of commuters on the New York City dataset shows that demographic information such as gender or race does not influence the sustainable mode of transportation, while the "start location"of travellers and their car access are influencing factors on sustainability. © 2022 IEEE.

sted, utgiver, år, opplag, sider
IEEE, 2022.
Emneord [en]
Clustering, Feature engineering, K-means, Sustainability, Transportation
HSV kategori
Forskningsprogram
Smarta städer och samhällen
Identifikatorer
URN: urn:nbn:se:hh:diva-49332DOI: 10.1109/ICAPAI55158.2022.9801569ISI: 000852632300002Scopus ID: 2-s2.0-85134170663ISBN: 978-1-6654-6781-0 (digital)ISBN: 978-1-6654-6782-7 (tryckt)OAI: oai:DiVA.org:hh-49332DiVA, id: diva2:1725693
Konferanse
2022 International Conference on Applied Artificial Intelligence, ICAPAI 2022, 5 May, Halden, Norway, 2022
Tilgjengelig fra: 2023-01-11 Laget: 2023-01-11 Sist oppdatert: 2023-10-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Rajabi, EnayatNowaczyk, Sławomir

Søk i DiVA

Av forfatter/redaktør
Rajabi, EnayatNowaczyk, Sławomir
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 172 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf