hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Software Defect Prediction: In collaboration with Danfoss Power Solutions
Högskolan i Halmstad, Akademin för informationsteknologi.
Högskolan i Halmstad, Akademin för informationsteknologi.
2022 (engelsk)Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
Abstract [en]

Being able to optimize testing resources in software development isvaluable when time and resources are scarce. The aim of this projectis to help testing departments improve the distribution of testing resources by identifying modules susceptible of having defects. Danfoss has logged all code changes made to their software modules thelast decade. The logs contain information about each specific change,whether it is a defect fix, feature implementation or maintenance.Using the change history of modules and module imports, indirectmodule connections can be discovered to find additional modules atrisk for having defects. The susceptible modules can be representedby software metrics in order to train a machine learning model. Thepurpose of the machine learning model is to prioritize the susceptible modules from modules requiring most to least testing resources.Once obtained, the priority list of modules should help the testing department distribute their resources, giving the most attention to themodules with a high number of predicted defects and focusing lesson modules with no predicted defects. The regression models werechosen based on popularity and performance in related work in thefield of software defect prediction. The models were evaluated basedon prediction error, coefficient of determination, recall and specificity.The results of this project indicate that a linear regression model canperform well when attempting to predict the number of defects basedon software metrics. Multi-layer perceptron regression models alsoperformed well but more work is required to match the performanceof linear models. 

sted, utgiver, år, opplag, sider
2022. , s. 74
Emneord [en]
Data mining, Machine learning, Defect prediction, Python, Regression, Software metrics
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-47001OAI: oai:DiVA.org:hh-47001DiVA, id: diva2:1667649
Eksternt samarbeid
Danfoss Power Solutions
Fag / kurs
Computer science and engineering
Utdanningsprogram
Computer Science and Engineering, 300 credits
Veileder
Examiner
Tilgjengelig fra: 2022-06-09 Laget: 2022-06-10 Sist oppdatert: 2022-12-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 277 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf