hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Eigenspace Method for Detecting Space-Time Disease Clusters with Unknown Population-Data
Department of Fundamental & Applied Sciences, Universiti Teknologi Petronas, Perak, Malaysia.
Department of Fundamental & Applied Sciences, Universiti Teknologi Petronas, Perak, Malaysia.
Department of Fundamental & Applied Sciences, Universiti Teknologi Petronas, Perak, Malaysia.
Department of Fundamental & Applied Sciences, Universiti Teknologi Petronas, Perak, Malaysia.
Vise andre og tillknytning
2022 (engelsk)Inngår i: Computers, Materials and Continua, ISSN 1546-2218, E-ISSN 1546-2226, Vol. 70, nr 1, s. 1945-1953Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Space-time disease cluster detection assists in conducting disease surveillance and implementing control strategies. The state-of-the-art method for this kind of problem is the Space-time Scan Statistics (SaTScan) which has limitations for non-traditional/non-clinical data sources due to its parametric model assumptions such as Poisson or Gaussian counts. Addressing this problem, an Eigenspace-based method called Multi-EigenSpot has recently been proposed as a nonparametric solution. However, it is based on the population counts data which are not always available in the least developed countries. In addition, the population counts are difficult to approximate for some surveillance data such as emergency department visits and over-the-counter drug sales, where the catchment area for each hospital/pharmacy is undefined. We extend the population-based Multi-EigenSpot method to approximate the potential disease clusters from the observed/reported disease counts only with no need for the population counts. The proposed adaptation uses an estimator of expected disease count that does not depend on the population counts. The proposed method was evaluated on the real-world dataset and the results were compared with the population-based methods: Multi-EigenSpot and SaTScan. The result shows that the proposed adaptation is effective in approximating the important outputs of the population-based methods. © 2021 Tech Science Press. All rights reserved.

sted, utgiver, år, opplag, sider
Henderson: Tech Science Press , 2022. Vol. 70, nr 1, s. 1945-1953
Emneord [en]
Space-time disease clusters, Eigenspace method, nontraditional data sources, nonparametric methods
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-45582DOI: 10.32604/cmc.2022.019029ISI: 000709118000028Scopus ID: 2-s2.0-85114558730OAI: oai:DiVA.org:hh-45582DiVA, id: diva2:1593890
Merknad

Funding: This article was funded by a Fundamental Research Grant Scheme (FRGS) from the Ministry of Education, Malaysia (Ref: FRGS/1/2018/STG06/UTP/02/1) and a Yayasan Universiti Teknologi PETRONAS-Fundamental Research Grant (cost center of 015LC0-013) received by Hanita Daud.

Tilgjengelig fra: 2021-09-14 Laget: 2021-09-14 Sist oppdatert: 2023-05-02bibliografisk kontrollert

Open Access i DiVA

fulltext(689 kB)187 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 689 kBChecksum SHA-512
e0fb15838c2fccef4b94d8608d946c215ad221414cc27e5b29c63242c298e076d64873251fb22b54e6eda5575be2a22a0eac101b196d2c9bc6d937a3f7f5caf9
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Fanaee Tork, Hadi

Søk i DiVA

Av forfatter/redaktør
Fanaee Tork, Hadi
Av organisasjonen
I samme tidsskrift
Computers, Materials and Continua

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 187 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 700 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf