hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Multi-aspect renewable energy forecasting
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0001-8413-963x
2021 (engelsk)Inngår i: Information Sciences, ISSN 0020-0255, E-ISSN 1872-6291, Vol. 546, s. 701-722Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The increasing presence of renewable energy plants has created new challenges such as grid integration, load balancing and energy trading, making it fundamental to provide effective prediction models. Recent approaches in the literature have shown that exploiting spatio-temporal autocorrelation in data coming from multiple plants can lead to better predictions. Although tensor models and techniques are suitable to deal with spatio-temporal data, they have received little attention in the energy domain. In this paper, we propose a new method based on the Tucker tensor decomposition, capable of extracting a new feature space for the learning task. For evaluation purposes, we have investigated the performance of predictive clustering trees with the new feature space, compared to the original feature space, in three renewable energy datasets. The results are favorable for the proposed method, also when compared with state-of-the-art algorithms. © 2020 Elsevier Inc.

sted, utgiver, år, opplag, sider
Netherlands: Elsevier, 2021. Vol. 546, s. 701-722
Emneord [en]
Time series, Forecasting, Energy, Machine learning, Multi-aspect analysis, Tensor factorization
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-43120DOI: 10.1016/j.ins.2020.08.003ISI: 000596075600017Scopus ID: 2-s2.0-85090923153OAI: oai:DiVA.org:hh-43120DiVA, id: diva2:1467760
Merknad

Funding: The Ministry of Education, Universities and Research (MIUR) through the project ‘ComESto – Community Energy Storage: Gestione Aggregata di Sistemi d’Accumulo dell’Energia in Power Cloud’ (Grant No. ARS01_01259) and the PON ‘Ricerca e Innovazione’ 2014–2020 project “CLOSE – Close to the Earth” (ARS01_001413).

Tilgjengelig fra: 2020-09-16 Laget: 2020-09-16 Sist oppdatert: 2021-01-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Fanaee Tork, Hadi

Søk i DiVA

Av forfatter/redaktør
Fanaee Tork, Hadi
Av organisasjonen
I samme tidsskrift
Information Sciences

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 310 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf