hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Real Time Gym Activity Detection using Monocular RGB Camera
Högskolan i Halmstad, Akademin för informationsteknologi.
2020 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Action detection is an attractive area for researchers in computer vision, healthcare, physiotherapy, psychology, and others. Intensive work has been done in this area due to its wide range of applications such as security surveillance, video tagging, Human-Computer Interaction (HCI), robotics, medical diagnosis, sports analysis, interactive gaming, and many others. After the deep learning booming results in computer vision tasks like image classification, many researchers have tried to extend the success of deep learning models to video classification and activity recognition. The research question of this thesis is to study the use of the 2D human poses extracted by a DNN-based model from RGB frames only, for the online activity detection task and comparing it with the state of the art solutions that utilize the human 3D skeletal data extracted by a depth sensor as an input. At the same time, this work showed the importance of input pre-processing and filtering on improving the performance of the online human activity detector. Detecting gym exercises and counting the repetitions in real-time using the human skeletal data versus the 2D poses have been studied in-depth in this work. The contributions of this work are as follows: 1) generating RGB-D dataset for a set of gym exercises, 2) proposing a novel real-time skeleton-based Double Representational RNN (DR-RNN) network architecture for the online action detection, 3) Demonstrating the ability of the proposed model to achieve satisfiable results using pose estimation models applied on RGB frames, 4) introducing a novel learnable exponential filter for the online low latency filtering applications.

sted, utgiver, år, opplag, sider
2020. , s. 38
Emneord [en]
ActivityDetection, RNN, GymActionDetection, PoseBasedActionDetection, DeepLearning, SkeletonBasedOnlineActionDetection
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-41440OAI: oai:DiVA.org:hh-41440DiVA, id: diva2:1390044
Fag / kurs
Computer science and engineering
Utdanningsprogram
Master's Programme in Embedded and Intelligent Systems, 120 credits
Presentation
2019-05-24, Halmstad, 00:47 (engelsk)
Veileder
Examiner
Tilgjengelig fra: 2020-01-31 Laget: 2020-01-31 Sist oppdatert: 2020-01-31bibliografisk kontrollert

Open Access i DiVA

fulltext(8129 kB)103 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 8129 kBChecksum SHA-512
d56252fcc15e1e0c1ed871e507ad1fd7e4695851a0996d1a3a218f6d13c2923cb4cf597e9c8b23ed8bb7661ab22dc6808a2d86db4109c39fad77af6f99f1d35f
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Alshatta, Mohammad Samer
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 103 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 118 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf